

A091970


a(1) = 0; for n>1, find largest integer k such that the word a(1)a(2)...a(n1) is of the form xy^k for words x and y (where y has positive length), i.e., k = the maximal number of repeating blocks at the end of the sequence so far; then a(n) = floor(k/2).


2



0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,10


COMMENTS

When does the first 3 occur? The first 4?


LINKS

Table of n, a(n) for n=1..99.
F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A SlowGrowing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A SlowGrowing Sequence Defined by an Unusual Recurrence [pdf, ps].
Index entries for sequences related to Gijswijt's sequence


CROSSREFS

A (presumably) even slowergrowing sequence than A090822.
Sequence in context: A161371 A327928 A147645 * A093955 A330168 A081603
Adjacent sequences: A091967 A091968 A091969 * A091971 A091972 A091973


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Mar 14 2004


STATUS

approved



