The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091970 a(1) = 0; for n>1, find largest integer k such that the word a(1)a(2)...a(n-1) is of the form xy^k for words x and y (where y has positive length), i.e., k = the maximal number of repeating blocks at the end of the sequence so far; then a(n) = floor(k/2). 2
 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,10 COMMENTS When does the first 3 occur? The first 4? LINKS F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2. F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps]. CROSSREFS A (presumably) even slower-growing sequence than A090822. Sequence in context: A161371 A327928 A147645 * A093955 A330168 A081603 Adjacent sequences:  A091967 A091968 A091969 * A091971 A091972 A091973 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 14 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 21:47 EDT 2021. Contains 342856 sequences. (Running on oeis4.)