login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327928
Number of distinct primes p such that p^p divides the arithmetic derivative of n.
12
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0
OFFSET
0,82
LINKS
FORMULA
a(0) = a(1) = 0; for n > 1, a(n) = A129251(A003415(n)).
EXAMPLE
For n=20, A003415(20) = 24 = 2^3 * 3^1, thus only 2^2 divides 24, and a(24) = 1.
For n=81, A003415(81) = 108 = 2^2 * 3^3. Both 2^2 and 3^3 divide 108, thus a(81) = 2.
PROG
(PARI)
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
A327928(n) = if(n<=1, 0, A129251(A003415(n)));
CROSSREFS
Cf. A003415, A129251, A327929 (indices of nonzero terms), A327932.
Sequence in context: A236233 A112607 A161371 * A364387 A147645 A091970
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 01 2019
STATUS
approved