login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327927
Expansion of e.g.f. exp(Sum_{i>=1} Sum_{j=1..i} x^(i*j) / (i*j)).
1
1, 1, 2, 6, 30, 150, 1020, 7140, 63420, 611100, 6625080, 72875880, 977213160, 12876743880, 190951160400, 2975661889200, 51767677962000, 886225654314000, 17136230971860000, 329530590793404000, 7035395004749311200, 151961029211943151200
OFFSET
0,3
FORMULA
E.g.f.: exp(Sum_{k>=1} ceiling(A000005(k)/2) * x^k / k).
E.g.f.: exp(Sum_{k>=1} A038548(k) * x^k / k).
E.g.f.: Product_{k>=1} 1 / (1 - x^A028260(k))^(1/A028260(k)).
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[Sum[Ceiling[DivisorSigma[0, k]/2] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Ceiling[DivisorSigma[0, k]/2] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
nmax = 20; CoefficientList[Series[Exp[Sum[-(x^(k*(1 + k))*LerchPhi[x^k, 1, 1 + k] + Log[1 - x^k])/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 06 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 30 2019
STATUS
approved