login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192446
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (3,0), (0,1), (0,3).
1
1, 2, 6, 30, 154, 768, 3906, 20232, 105750, 556328, 2943432, 15646932, 83500126, 447057380, 2400249624, 12918250836, 69674241654, 376489511460, 2037768450480, 11045915485740, 59955446568276, 325821729044784, 1772588671356204, 9653187691115640, 52617711157401186, 287051310425050668
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (x + y + x^3 + y^3)). - Gheorghe Coserea, Aug 06 2018
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1344 (first 304 terms from Gheorghe Coserea)
FORMULA
G.f.: sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3) where s is a function satisfying 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1)=0. - Mark van Hoeij, Apr 17 2013
From Gheorghe Coserea, Aug 06 2018: (Start)
G.f. y=A(x) satisfies:
0 = (4*x^3 + 8*x^2 + 4*x - 1)^4*(108*x^3 - 108*x^2 + 36*x - 31)^2*y^8 + 4*(4*x^3 + 8*x^2 + 4*x - 1)^3*(36*x^3 + 36*x^2 - 4*x - 13)*(108*x^3 - 108*x^2 + 36*x - 31)*y^6 + 2*(4*x^3 + 8*x^2 + 4*x - 1)^2*(2160*x^6 + 4320*x^5 + 1872*x^4 - 1784*x^3 - 1576*x^2 + 472*x + 431)*y^4 + 4*(4*x^3 + 8*x^2 + 4*x - 1)*(112*x^6 + 448*x^5 + 688*x^4 + 456*x^3 + 96*x^2 + 40*x + 55)*y^2 + (4*x^3 + 12*x^2 + 12*x + 3)^2.
0 = (4*x^3 + 8*x^2 + 4*x - 1)*(108*x^3 - 108*x^2 + 36*x - 31)*(270*x^4 + 180*x^3 + 144*x^2 - 225*x - 59)*y''' + (1283040*x^9 + 1924560*x^8 + 1080864*x^7 - 1425816*x^6 - 2135376*x^5 + 33048*x^4 + 702468*x^3 + 134520*x^2 + 43892*x + 30575)*y'' + 30*(111780*x^8 + 149040*x^7 + 120960*x^6 - 122094*x^5 - 172206*x^4 - 6012*x^3 + 36615*x^2 + 10298*x - 1541)*y' + 60*(29160*x^7 + 34020*x^6 + 36288*x^5 - 43092*x^4 - 45882*x^3 - 6462*x^2 + 1890*x + 913)*y.
(End)
MAPLE
REL := 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1);
ogf := sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3);
series(eval(ogf, s=RootOf(REL, s)), x=0, 30); # Mark van Hoeij, Apr 17 2013
# second Maple program:
b:= proc(x, y) option remember; `if`(y=0, 1, add((p->
`if`(p[1]<0, 0, b(p[1], p[2])))(sort([x, y]-h)),
h=[[1, 0], [0, 1], [3, 0], [0, 3]]))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 28 2018
MATHEMATICA
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-3] + a[n-1, k] + a[n-3, k]; a[_, _] = 0;
a[n_] := a[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Oct 06 2019 *)
PROG
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [3, 0], [0, 1], [0, 3]];
/* Joerg Arndt, Jun 30 2011 */
(PARI)
seq(N) = {
my(x='x + O('x^N), d=16*x^6 + 16*x^5 + 16*x^4 - 8*x^3 - 4*x^2 + 1,
s=serreverse((1 - 2*x^2 + 2*x^3 - sqrt(d))/(6*x^2)));
Vec(sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3));
};
seq(26) \\ Gheorghe Coserea, Aug 06 2018
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 01 2011
STATUS
approved