OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A327930, or equally, of the ordered pair [A003415(n), A319356(n)].
It seems that the sequence takes duplicated values only on primes (A000040) and some subset of squarefree semiprimes (A006881). If this holds, then also the last implication given below is valid.
For all i, j:
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
a(p) = 2 for all primes p.
EXAMPLE
Divisors of 39 are [1, 3, 13, 39], while the divisors of 55 are [1, 5, 11, 55]. Taking their arithmetic derivatives (A003415) yields in both cases [0, 1, 1, 16], thus a(39) = a(55) (= 28, as allotted by restricted growth sequence transform).
PROG
(PARI)
up_to = 8192;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
v003415 = vector(up_to, n, A003415(n));
A327930(n) = { my(m=1); fordiv(n, d, if((d>1), m *= prime(v003415[d]))); (m); };
v327931 = rgs_transform(vector(up_to, n, A327930(n)));
A327931(n) = v327931[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 30 2019
STATUS
approved