

A236103


Number of distinct partition numbers dividing n.


9



1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 1, 3, 4, 2, 1, 3, 1, 3, 3, 4, 1, 3, 2, 2, 2, 3, 1, 6, 1, 2, 3, 2, 3, 3, 1, 2, 2, 3, 1, 5, 1, 4, 4, 2, 1, 3, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 6, 1, 2, 3, 2, 2, 5, 1, 2, 2, 4, 1, 3, 1, 2, 4, 2, 4, 3, 1, 3, 2, 2, 1, 5, 2, 2, 2, 4, 1, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000


EXAMPLE

For n = 20 the divisors of 20 are 1, 2, 4, 5, 10, 20 and three of them are also partition numbers: 1, 2, 5, so a(20) = 3.
For n = 42 the divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42 and five of them are also partition numbers: 1, 2, 3, 7, 42, so a(42) = 5.


MATHEMATICA

p = {1}; Table[If[n >= Last@p, AppendTo[p, PartitionsP[1 + Length@p]]]; Length@Select[p, Mod[n, #] == 0 &], {n, 90}] (* Giovanni Resta, Jan 22 2014 *)


CROSSREFS

Cf. A000041, A001221, A049575, A085543, A236102, A236105, A236107, A236108.
Sequence in context: A259651 A253719 A081147 * A278293 A163671 A287841
Adjacent sequences: A236100 A236101 A236102 * A236104 A236105 A236106


KEYWORD

nonn


AUTHOR

Omar E. Pol, Jan 21 2014


STATUS

approved



