login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236103
Number of distinct partition numbers dividing n.
9
1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 1, 3, 4, 2, 1, 3, 1, 3, 3, 4, 1, 3, 2, 2, 2, 3, 1, 6, 1, 2, 3, 2, 3, 3, 1, 2, 2, 3, 1, 5, 1, 4, 4, 2, 1, 3, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 6, 1, 2, 3, 2, 2, 5, 1, 2, 2, 4, 1, 3, 1, 2, 4, 2, 4, 3, 1, 3, 2, 2, 1, 5, 2, 2, 2, 4, 1, 6
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Jan 01 2024: (Start)
a(n) = Sum_{d|n} A167392(d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A078506 = 2.510597... . (End)
EXAMPLE
For n = 20 the divisors of 20 are 1, 2, 4, 5, 10, 20 and three of them are also partition numbers: 1, 2, 5, so a(20) = 3.
For n = 42 the divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42 and five of them are also partition numbers: 1, 2, 3, 7, 42, so a(42) = 5.
MATHEMATICA
p = {1}; Table[If[n >= Last@p, AppendTo[p, PartitionsP[1 + Length@p]]]; Length@Select[p, Mod[n, #] == 0 &], {n, 90}] (* Giovanni Resta, Jan 22 2014 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 21 2014
STATUS
approved