

A253719


Least k>0 such that n AND (n^k) <= 1, where AND denotes the bitwise AND operator.


2



1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 3, 6, 5, 4, 2, 4, 2, 8, 3, 8, 5, 2, 2, 2, 2, 2, 2, 2, 3, 6, 2, 2, 4, 12, 2, 4, 4, 4, 2, 4, 2, 10, 3, 14, 6, 8, 2, 8, 6, 16, 3, 16, 6, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 4, 4, 4, 2, 4, 4, 6, 2, 2, 5, 8, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

This sequence is well defined: for any n such that n < 2^m:
 If n is even, then n^m = 0 mod 2^m, hence n AND (n^m) = 0, and a(n) <= m,
 If n is odd, then n^phi(2^m) = 1 mod 2^m according to Euler's totient theorem, hence n AND (n^phi(2^m)) = 1, and a(n) <= phi(2^m).
a(2*(2^m1)) = m+1 for any m>=0.  Paul Tek, May 03 2015


LINKS

Paul Tek, Table of n, a(n) for n = 0..100000


EXAMPLE

11 AND (11^1) = 11,
11 AND (11^2) = 9,
11 AND (11^3) = 3,
11 AND (11^4) = 1,
hence a(11)=4.


PROG

(PARI) a(n) = my(k=1, nk=n); while (bitand(n, nk)>1, k=k+1; nk=nk*n); return (k)


CROSSREFS

Cf. A224694.
Sequence in context: A217619 A187186 A259651 * A081147 A236103 A278293
Adjacent sequences: A253716 A253717 A253718 * A253720 A253721 A253722


KEYWORD

nonn,base


AUTHOR

Paul Tek, May 02 2015


STATUS

approved



