login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224694
Numbers n such that n^2 AND n = 0, where AND is the bitwise logical AND operator.
3
0, 2, 4, 8, 10, 12, 16, 18, 24, 26, 32, 34, 36, 40, 44, 48, 50, 56, 64, 66, 68, 76, 80, 90, 96, 98, 100, 108, 112, 128, 130, 132, 136, 138, 144, 146, 152, 160, 164, 168, 176, 184, 192, 194, 196, 208, 224, 228, 240, 256, 258, 260, 264, 266, 268, 280, 282, 288, 290, 296, 312
OFFSET
1,2
COMMENTS
Indices of zeros in A213541.
The sequence b(n) = a(n)/2 begins: 0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 24, 25, 28, 32, 33, 34, 38, 40, 45, 48, 49, 50, 54, 56, 64
LINKS
MAPLE
read("transforms") :
isA224694 := proc(n)
return( ANDnos(n^2, n) =0 ) ;
end proc:
A224694 := proc(n)
option remember;
if n = 1 then
0;
else
for a from procname(n-1)+1 do
if isA224694(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Apr 25 2013
MATHEMATICA
Select[Range[0, 350], BitAnd[#^2, #] == 0 &] (* Matthew House, Jul 14 2015 *)
PROG
(Python)
for i in range(333):
if ((i*i) & i)==0:
print str(i)+', ',
(Haskell)
import Data.List (elemIndices)
a224694 n = a224694_list !! (n-1)
a224694_list = elemIndices 0 a213541_list
-- Reinhard Zumkeller, Apr 25 2013
CROSSREFS
Cf. A213541.
Sequence in context: A097498 A346502 A321580 * A140900 A166936 A166245
KEYWORD
nonn,easy,base
AUTHOR
Alex Ratushnyak, Apr 15 2013
STATUS
approved