login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 23*n^2.
5

%I #28 Dec 01 2024 13:41:26

%S 0,23,92,207,368,575,828,1127,1472,1863,2300,2783,3312,3887,4508,5175,

%T 5888,6647,7452,8303,9200,10143,11132,12167,13248,14375,15548,16767,

%U 18032,19343,20700,22103,23552,25047,26588,28175,29808,31487,33212,34983,36800,38663

%N a(n) = 23*n^2.

%C First bisection of A195058. - _Bruno Berselli_, Jul 03 2014

%H Vincenzo Librandi, <a href="/A244632/b244632.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: 23*x*(1 + x)/(1 - x)^3. [corrected by _Bruno Berselli_, Jul 03 2014]

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.

%F a(n) = 23*A000290(n). - _Omar E. Pol_, Jul 03 2014

%F From _Elmo R. Oliveira_, Dec 01 2024: (Start)

%F E.g.f.: 23*x*(1 + x)*exp(x).

%F a(n) = n*A008605(n) = A195058(2*n). (End)

%t Table[23 n^2, {n, 0, 40}]

%t LinearRecurrence[{3,-3,1},{0,23,92},50] (* _Harvey P. Dale_, Jul 14 2024 *)

%o (Magma) [23*n^2: n in [0..40]];

%o (PARI) a(n)=23*n^2 \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A000290, A008605, A195058.

%Y Cf. similar sequences listed in A244630.

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Jul 03 2014