login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154343
S(n,k) an additive decomposition of the Springer number (generalized Euler number), (triangle read by rows).
6
1, 3, -2, 9, -16, 4, 27, -98, 60, 0, 81, -544, 616, 0, -96, 243, -2882, 5400, 0, -3360, 960, 729, -14896, 43564, 0, -72480, 46080, -5760, 2187, -75938, 334740, 0, -1246560, 1323840, -362880, 0, 6561, -384064, 2495056, 0, -18801216, 29675520
OFFSET
0,2
COMMENTS
The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1/2 and multiplied by 2^n these polynomials result in a decomposition of the Springer numbers A001586.
FORMULA
Let c(k) = frac{(-1)^{floor(k/4)}{2^{floor(k/2)}} [4 not div k] (Iverson notation).
S(n,k) = Sum_{v=0,..,k} ( (-1)^(v)*binomial(k,v)*2^n*c(k)*(v+3/2)^n );
S(n) = Sum_{k=0,..,n} S(n,k).
EXAMPLE
1,
3, -2,
9, -16, 4,
27, -98, 60, 0,
81, -544, 616, 0, -96,
243, -2882, 5400, 0, -3360, 960,
729, -14896, 43564, 0, -72480, 46080, -5760,
2187, -75938, 334740, 0, -1246560, 1323840, -362880, 0,
6561, -384064, 2495056, 0, -18801216, 29675520, -13386240, 0, 645120.
MAPLE
S := proc(n, k) local v, c; c := m -> if irem(m+1, 4) = 0 then 0 else 1/((-1)^iquo(m+1, 4)*2^iquo(m, 2)) fi; add((-1)^(v)*binomial(k, v)*2^n*c(k)*(v+3/2)^n, v=0..k) end: seq(print(seq(S(n, k), k=0..n)), n=0..8);
MATHEMATICA
c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; s[n_, k_] := Sum[(-1)^v*Binomial[k, v]*2^n*c[k]*(v+3/2)^n, {v, 0, k}]; Table[s[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Peter Luschny, Jan 07 2009
STATUS
approved