login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378931
Triangle read by rows, based on products of Jacobsthal numbers (A001045).
0
1, -1, 3, -2, -9, 15, -4, -18, -25, 55, -8, -36, -50, -121, 231, -16, -72, -100, -242, -441, 903, -32, -144, -200, -484, -882, -1849, 3655, -64, -288, -400, -968, -1764, -3698, -7225, 14535, -128, -576, -800, -1936, -3528, -7396, -14450, -29241, 58311, -256, -1152, -1600, -3872, -7056, -14792, -28900, -58482, -116281, 232903
OFFSET
1,3
COMMENTS
Let M = T^(-1) be matrix inverse of T seen as a lower triangular matrix. M is a harmonic triangle with M(n, k) = 1 / A084175(n) if k = n, and 1 / A378676(k) if 1 <= k < n. Triangle M(n, k) for 1 <= k <= n starts:
1/1
1/3 1/3
1/3 1/5 1/15
1/3 1/5 1/33 1/55
1/3 1/5 1/33 1/105 1/231
1/3 1/5 1/33 1/105 1/473 1/903
etc.
Sum_{k=1..n} M(n, k) * 2^(k-1) = 1.
Sum_{k=1..n} M(n, k) * (-2)^(k-1) = (-1)^(n-1) / A001045(n+1).
Sum_{k=1..n} 2^(k-1) / M(n, k) = (8^n - 1) / 7 = A023001(n).
FORMULA
T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n.
G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)).
EXAMPLE
Triangle T(n, k) for 1 <= k <= n starts:
n\k : 1 2 3 4 5 6 7 8 9
===================================================================
1 : 1
2 : -1 3
3 : -2 -9 15
4 : -4 -18 -25 55
5 : -8 -36 -50 -121 231
6 : -16 -72 -100 -242 -441 903
7 : -32 -144 -200 -484 -882 -1849 3655
8 : -64 -288 -400 -968 -1764 -3698 -7225 14535
9 : -128 -576 -800 -1936 -3528 -7396 -14450 -29241 58311
etc.
MATHEMATICA
T[n_, k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Stefano Spezia, Dec 11 2024 *)
PROG
(PARI) T(n, k)=if(k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9)
CROSSREFS
A084175 (main diagonal), A139818 (1st subdiagonal), A000079 (column 1 and row sums).
Sequence in context: A358603 A076584 A309673 * A154343 A049969 A088634
KEYWORD
sign,easy,tabl
AUTHOR
Werner Schulte, Dec 11 2024
STATUS
approved