OFFSET
1,3
COMMENTS
Let M = T^(-1) be matrix inverse of T seen as a lower triangular matrix. M is a harmonic triangle with M(n, k) = 1 / A084175(n) if k = n, and 1 / A378676(k) if 1 <= k < n. Triangle M(n, k) for 1 <= k <= n starts:
1/1
1/3 1/3
1/3 1/5 1/15
1/3 1/5 1/33 1/55
1/3 1/5 1/33 1/105 1/231
1/3 1/5 1/33 1/105 1/473 1/903
etc.
Sum_{k=1..n} M(n, k) * 2^(k-1) = 1.
Sum_{k=1..n} M(n, k) * (-2)^(k-1) = (-1)^(n-1) / A001045(n+1).
Sum_{k=1..n} 2^(k-1) / M(n, k) = (8^n - 1) / 7 = A023001(n).
FORMULA
T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n.
G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)).
EXAMPLE
Triangle T(n, k) for 1 <= k <= n starts:
n\k : 1 2 3 4 5 6 7 8 9
===================================================================
1 : 1
2 : -1 3
3 : -2 -9 15
4 : -4 -18 -25 55
5 : -8 -36 -50 -121 231
6 : -16 -72 -100 -242 -441 903
7 : -32 -144 -200 -484 -882 -1849 3655
8 : -64 -288 -400 -968 -1764 -3698 -7225 14535
9 : -128 -576 -800 -1936 -3528 -7396 -14450 -29241 58311
etc.
MATHEMATICA
T[n_, k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Stefano Spezia, Dec 11 2024 *)
PROG
(PARI) T(n, k)=if(k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9)
CROSSREFS
KEYWORD
AUTHOR
Werner Schulte, Dec 11 2024
STATUS
approved