login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378676
a(n) = J(n) * J(n+2) where J(n) = Jacobsthal(n) = A001045(n).
0
0, 3, 5, 33, 105, 473, 1785, 7353, 28985, 116793, 465465, 1865273, 7454265, 29830713, 119295545, 477236793, 1908837945, 7635570233, 30541844025, 122168249913, 488671252025, 1954688503353, 7818747022905, 31275002072633, 125099980328505, 500399977238073, 2001599797104185, 8006399412112953, 32025597201059385
OFFSET
0,2
FORMULA
a(n) = (2^n - (-1)^n) * (2^(n+2) - (-1)^n) / 9 = (4 * 4^n - 5 * (-2)^n + 1) / 9.
G.f.: x * (3 - 4*x) / ((1-x) * (1+2*x) * (1-4*x)).
a(n) = 3 * a(n-1) + 6 * a(n-2) - 8 * a(n-3) for n > 2 with initial values a(0) = 0, a(1) = 3, and a(2) = 5.
Sum_{k=1..n-1} 2^(k-1) / a(k) = 1 - 2^(n-1) / A084175(n) for n > 0.
Sum_{k>0} 2^(k-1) / a(k) = 1.
E.g.f.: exp(x)*(1 - cosh(3*x) + 9*sinh(3*x))/9. - Stefano Spezia, Dec 06 2024
MATHEMATICA
a[n_] := (4^(n+1) - 5*(-2)^n + 1)/9; Array[a, 30, 0] (* Amiram Eldar, Dec 06 2024 *)
PROG
(PARI) a(n)=(4^(n+1)-5*(-2)^n+1)/9
CROSSREFS
Sequence in context: A103010 A225866 A332704 * A263295 A222484 A354849
KEYWORD
nonn,easy,new
AUTHOR
Werner Schulte, Dec 03 2024
STATUS
approved