OFFSET
0,2
LINKS
FORMULA
a(n) = (2^n - (-1)^n) * (2^(n+2) - (-1)^n) / 9 = (4 * 4^n - 5 * (-2)^n + 1) / 9.
G.f.: x * (3 - 4*x) / ((1-x) * (1+2*x) * (1-4*x)).
a(n) = 3 * a(n-1) + 6 * a(n-2) - 8 * a(n-3) for n > 2 with initial values a(0) = 0, a(1) = 3, and a(2) = 5.
Sum_{k=1..n-1} 2^(k-1) / a(k) = 1 - 2^(n-1) / A084175(n) for n > 0.
Sum_{k>0} 2^(k-1) / a(k) = 1.
E.g.f.: exp(x)*(1 - cosh(3*x) + 9*sinh(3*x))/9. - Stefano Spezia, Dec 06 2024
MATHEMATICA
a[n_] := (4^(n+1) - 5*(-2)^n + 1)/9; Array[a, 30, 0] (* Amiram Eldar, Dec 06 2024 *)
PROG
(PARI) a(n)=(4^(n+1)-5*(-2)^n+1)/9
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Werner Schulte, Dec 03 2024
STATUS
approved