login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378678
a(n) = numerator(Sum_{k=1..n} 1/P(k)), where P(k) = A006530(k) is the greatest prime dividing k for k >= 2, and P(1) = 1.
2
1, 3, 11, 7, 38, 43, 316, 737, 269, 283, 3183, 10319, 136457, 140747, 146753, 80884, 1390043, 1475128, 28282687, 29252656, 29945491, 30386386, 703736723, 246972956, 50881877, 51453910, 161798159, 164985200, 4806880087, 24681369758, 768357309113, 1636994863291
OFFSET
1,2
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory, Vol. 1, Springer, 2006, Chapter IV, p. 122.
LINKS
Paul Erdős and Aleksandar Ivić, Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Studia Sci. Math. Hungar, Vol. 15, No. 1-3 (1980), pp. 183-199.
Paul Erdős and Aleksandar Ivić, On sums involving reciprocals of certain arithmetical functions, Publ. Inst. Math.(Beograd)(NS), Vol. 32, No. 46 (1982), pp. 49-56.
Paul Erdős, Aleksandar Ivić, and Carl Pomerance, On sums involving reciprocals of the largest prime factor of an integer, Glasnik Matematicki, Vol. 21, No. 41 (1986), pp. 283-300.
Aleksandar Ivić, Sum of reciprocals of the largest prime factor of an integer, Archiv der Mathematik, Vol. 36 (1981), pp. 57-61.
Aleksandar Ivić, On sums involving reciprocals of the largest prime factor of an integer II, Acta Arithmetica, Vol. 71, No. 3 (1995), pp. 229-251
Aleksandar Ivić and Carl Pomerance, Estimates for certain sums involving the largest prime factor of an integer, Coll. Math. Soc. J. Bolyai, Vol. 34 (1981), pp. 769-789.
FORMULA
a(n)/A378679(n) = n * exp(-sqrt(2*log(n)*log(log(n))) + O(sqrt(log(n)*log(log(log(n)))))) (Ivić, 1981).
EXAMPLE
Fractions begin: 1, 3/2, 11/6, 7/3, 38/15, 43/15, 316/105, 737/210, 269/70, 283/70, 3183/770, 10319/2310, ...
MATHEMATICA
Numerator@ Accumulate[Table[1/FactorInteger[n][[-1, 1]], {n, 1, 33}]]
PROG
(PARI) lista(nmax) = {my(s = 1); print1(1, ", "); for(n = 2, nmax, f = factor(n); s += 1/f[#f~, 1]; print1(numerator(s), ", ")); }
CROSSREFS
Cf. A006530, A057158, A378679 (denominators).
Sequence in context: A119324 A322364 A250034 * A006495 A112286 A126261
KEYWORD
nonn,easy,frac,new
AUTHOR
Amiram Eldar, Dec 03 2024
STATUS
approved