login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378680
a(n) = numerator(Sum_{k=1..n} 1/P_2(k)), where P_2(k) = A087040(k) is the second largest prime dividing the k-th composite number.
2
1, 1, 3, 11, 7, 17, 10, 11, 25, 9, 5, 16, 35, 19, 98, 211, 221, 118, 41, 87, 271, 143, 146, 151, 317, 109, 57, 176, 367, 377, 196, 407, 2879, 2921, 997, 516, 1583, 1604, 3313, 3383, 1744, 593, 1221, 3733, 1919, 388, 395, 811, 275, 1389, 4237, 2171, 2192, 4489
OFFSET
1,3
LINKS
Jean-Marie De Koninck, Sur les plus grands facteurs premiers d'un entier, Monatshefte für Mathematik, Vol. 116, No. 1 (1993), pp. 13-37; alternative link; author's copy.
FORMULA
a(n)/A378681(n) = Sum_{k=1..m} c_k * n/log(n)^k + O(n/log(n)^(m+1)) for any integer m >= 1, where c_k are constants. c_1 = Sum_{k>=1} (1/k)*Sum_{p prime > P(k)} 1/p^2 = Sum_{p prime} (1/p^2)*Product_{primes q < p} (1/(1-1/q)) = 1.254435359..., where P(k) = A006530(k) is the greatest prime dividing k for k >= 2, and P(1) = 1.
EXAMPLE
Fractions begin: 1/2, 1, 3/2, 11/6, 7/3, 17/6, 10/3, 11/3, 25/6, 9/2, 5, 16/3, ...
MATHEMATICA
p2[c_] := Module[{f = FactorInteger[c]}, If[f[[-1, 2]] > 1, f[[-1, 1]], f[[-2, 1]]]]; Numerator@ Accumulate[Table[1/p2[c], {c, Select[Range[100], CompositeQ]}]]
PROG
(PARI) lista(nmax) = {my(s = 0); forcomposite(n = 1, nmax, f = factor(n); s += if(f[#f~, 2] > 1, 1/f[#f~, 1], 1/f[#f~ - 1, 1]); print1(numerator(s), ", ")); }
CROSSREFS
Cf. A006530, A087039, A087040, A378681 (denominators).
Sequence in context: A288902 A288832 A164808 * A355895 A153285 A083557
KEYWORD
nonn,easy,frac,new
AUTHOR
Amiram Eldar, Dec 03 2024
STATUS
approved