login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378683
a(0) = 1, a(n+1) = 6*a(n)^3 - 3*a(n).
0
1, 3, 153, 21489003, 59538796254981950751153, 1266343134315970349117919634635229303292221774134557782012151266098003
OFFSET
0,2
COMMENTS
If we define u(n) = 1 , u(n+1) = (u(n)/3)*(u(n)^2+9) / (u(n)^2 + 1), then u(n) = A238799(n) / a(n) ; this is Halley's method to calculate sqrt(3).
FORMULA
a(n) = ((1 + sqrt(3))^(3^n) - (1 - sqrt(3))^(3^n))/2^((3^n+1)/2) / sqrt(3).
a(n) = A002530(3^n).
a(n) = A002605(3^n)/2^((3^n+1)/2).
MAPLE
a:=1 : A:=NULL : for k to 5 do a:=6*a^3-3*a : A:=A, a od : A;
MATHEMATICA
NestList[6#^3-3# &, 1, 5] (* Stefano Spezia, Dec 06 2024 *)
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Robert FERREOL, Dec 03 2024
STATUS
approved