login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075514
a(0)=1; for n > 0, a(n)=sum(binomial(n,k)*(binomial(n+k,k+1)^2)* binomial(n+k,k),k=0..n).
1
1, 3, 154, 7941, 429036, 24123105, 1399303662, 83176893681, 5041470373624, 310449199290489, 19369215839341710, 1221826010437625703, 77798300823672280164, 4993767938470070592261, 322795606469564782029126
OFFSET
0,2
FORMULA
Special values of the hypergeometric function 4F3, in Maple notation: a(n)=n^2*hypergeom([n+1, n+1, n+1, -n], [1, 2, 2], -1), n=1, 2....
Recurrence: 4*(n-1)^2*(n+1)^2*(29412*n^8 - 523944*n^7 + 3995715*n^6 - 17035566*n^5 + 44400751*n^4 - 72401280*n^3 + 72040928*n^2 - 39898368*n + 9379584)*a(n) = 2*(4176504*n^12 - 80664804*n^11 + 681787110*n^10 - 3320158377*n^9 + 10317109990*n^8 - 21386158690*n^7 + 29990437762*n^6 - 28191974977*n^5 + 17142077578*n^4 - 6206039632*n^3 + 1063468848*n^2 + 4760064*n - 18759168)*a(n-1) + 4*(823536*n^12 - 17141040*n^11 + 157530180*n^10 - 841802850*n^9 + 2898036925*n^8 - 6724482767*n^7 + 10676838689*n^6 - 11506383284*n^5 + 8122517663*n^4 - 3444627899*n^3 + 682922191*n^2 + 15710352*n - 19910592)*a(n-2) + 2*(n-3)*(235296*n^11 - 4544496*n^10 + 38143266*n^9 - 182713089*n^8 + 551659187*n^7 - 1094072109*n^6 + 1439496807*n^5 - 1235496354*n^4 + 653944224*n^3 - 183118980*n^2 + 13441600*n + 2965248)*a(n-3) - (n-4)^2*(n-3)^2*(29412*n^8 - 288648*n^7 + 1151643*n^6 - 2417028*n^5 + 2879446*n^4 - 1930604*n^3 + 642371*n^2 - 53200*n - 12768)*a(n-4). - Vaclav Kotesovec, Mar 02 2014
a(n) ~ c * d^n / n^(3/2), where d = 71.39297952064022156... is the root of the equation 1 - 16*d - 112*d^2 - 284*d^3 + 4*d^4 = 0, and c = 0.2216473197208166381284001749414... - Vaclav Kotesovec, Mar 02 2014
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*(Binomial[n+k, k+1]^2)* Binomial[n+k, k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 02 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 02 2002
STATUS
approved