Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Mar 02 2014 16:55:30
%S 1,3,154,7941,429036,24123105,1399303662,83176893681,5041470373624,
%T 310449199290489,19369215839341710,1221826010437625703,
%U 77798300823672280164,4993767938470070592261,322795606469564782029126
%N a(0)=1; for n > 0, a(n)=sum(binomial(n,k)*(binomial(n+k,k+1)^2)* binomial(n+k,k),k=0..n).
%F Special values of the hypergeometric function 4F3, in Maple notation: a(n)=n^2*hypergeom([n+1, n+1, n+1, -n], [1, 2, 2], -1), n=1, 2....
%F Recurrence: 4*(n-1)^2*(n+1)^2*(29412*n^8 - 523944*n^7 + 3995715*n^6 - 17035566*n^5 + 44400751*n^4 - 72401280*n^3 + 72040928*n^2 - 39898368*n + 9379584)*a(n) = 2*(4176504*n^12 - 80664804*n^11 + 681787110*n^10 - 3320158377*n^9 + 10317109990*n^8 - 21386158690*n^7 + 29990437762*n^6 - 28191974977*n^5 + 17142077578*n^4 - 6206039632*n^3 + 1063468848*n^2 + 4760064*n - 18759168)*a(n-1) + 4*(823536*n^12 - 17141040*n^11 + 157530180*n^10 - 841802850*n^9 + 2898036925*n^8 - 6724482767*n^7 + 10676838689*n^6 - 11506383284*n^5 + 8122517663*n^4 - 3444627899*n^3 + 682922191*n^2 + 15710352*n - 19910592)*a(n-2) + 2*(n-3)*(235296*n^11 - 4544496*n^10 + 38143266*n^9 - 182713089*n^8 + 551659187*n^7 - 1094072109*n^6 + 1439496807*n^5 - 1235496354*n^4 + 653944224*n^3 - 183118980*n^2 + 13441600*n + 2965248)*a(n-3) - (n-4)^2*(n-3)^2*(29412*n^8 - 288648*n^7 + 1151643*n^6 - 2417028*n^5 + 2879446*n^4 - 1930604*n^3 + 642371*n^2 - 53200*n - 12768)*a(n-4). - _Vaclav Kotesovec_, Mar 02 2014
%F a(n) ~ c * d^n / n^(3/2), where d = 71.39297952064022156... is the root of the equation 1 - 16*d - 112*d^2 - 284*d^3 + 4*d^4 = 0, and c = 0.2216473197208166381284001749414... - _Vaclav Kotesovec_, Mar 02 2014
%t Flatten[{1,Table[Sum[Binomial[n,k]*(Binomial[n+k,k+1]^2)* Binomial[n+k,k],{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Mar 02 2014 *)
%Y Cf. A074635, A074649, A073530.
%K nonn
%O 0,2
%A _Karol A. Penson_, Sep 02 2002