login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344898
Number of equivalence classes of pairs of permutations on S2n where 2 pairs are equivalent if they generate similar maps on Dyck paths.
0
1, 3, 154, 8369, 711226, 90349957, 16012077362, 3768789527617, 1136241039871954, 426747190631335301, 195301450278484563322, 106968871128338892427537, 69076413764424335543681642, 51931946172675368683512111589, 44964793280161619728525791864226, 44419470206051792513510236597094657
OFFSET
1,2
LINKS
Kevin Limanta, Hopein Christofen Tang, and Yozef Tjandra, Permutation-generated maps between Dyck paths, arXiv:2105.14439 [math.CO], 2021.
FORMULA
a(n) = 1 - n^2 + 2*Sum_{a=1, n-1} Sum_{b=1, n-1} n!^2*(binomial(2*n-2-a-b, n-2)+binomial(2*n-2-a-b, n-1-a))/(max(a,2)!*max(b,2)!) for n>=3. - clarified by Kevin Limanta, Dec 29 2022
a(n) ~ c * 2^(2*n + 1) * n^(2*n + 1/2) / exp(2*n), where c = sqrt(Pi) * (25/16 + exp(1) - 5*exp(1/2)/2) = 0.281782323432896188420860093697452373839427854773... - Vaclav Kotesovec, Dec 29 2022
MATHEMATICA
Join[{1, 3}, Table[1 - n^2 + 2*Sum[Sum[n!^2*(Binomial[2*n - 2 - k - j, n - 2] + Binomial[2*n - 2 - k - j, n - 1 - k])/(Max[k, 2]! * Max[j, 2]!), {k, 1, n - 1}], {j, 1, n - 1}], {n, 3, 20}]] (* Vaclav Kotesovec, Dec 29 2022 *)
PROG
(PARI) a(n) = if (n==1, 1, if (n==2, 3, 1 - n^2 + 2*sum(a=1, n-1, sum(b=1, n-1, n!^2*(binomial(2*n-2-a-b, n-2)+binomial(2*n-2-a-b, n-1-a))/(max(a, 2)!*max(b, 2)!))))); \\ corrected by Michel Marcus, Dec 29 2022
CROSSREFS
Sequence in context: A378683 A156990 A075514 * A327058 A087306 A278877
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 01 2021
EXTENSIONS
Offset 1 from Vaclav Kotesovec, Dec 29 2022
STATUS
approved