Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 05 2024 09:27:16
%S 1,1,3,11,7,17,10,11,25,9,5,16,35,19,98,211,221,118,41,87,271,143,146,
%T 151,317,109,57,176,367,377,196,407,2879,2921,997,516,1583,1604,3313,
%U 3383,1744,593,1221,3733,1919,388,395,811,275,1389,4237,2171,2192,4489
%N a(n) = numerator(Sum_{k=1..n} 1/P_2(k)), where P_2(k) = A087040(k) is the second largest prime dividing the k-th composite number.
%H Amiram Eldar, <a href="/A378680/b378680.txt">Table of n, a(n) for n = 1..1000</a>
%H Jean-Marie De Koninck, <a href="https://doi.org/10.1007/BF01388417">Sur les plus grands facteurs premiers d'un entier</a>, Monatshefte für Mathematik, Vol. 116, No. 1 (1993), pp. 13-37; <a href="https://eudml.org/doc/178614">alternative link</a>; <a href="https://www.jeanmariedekoninck.mat.ulaval.ca/fileadmin/Documents/Publications/1993_sur_les_plus_grands_facteurs_premiers_d_un_entier.pdf">author's copy</a>.
%F a(n)/A378681(n) = Sum_{k=1..m} c_k * n/log(n)^k + O(n/log(n)^(m+1)) for any integer m >= 1, where c_k are constants. c_1 = Sum_{k>=1} (1/k)*Sum_{p prime > P(k)} 1/p^2 = Sum_{p prime} (1/p^2)*Product_{primes q < p} (1/(1-1/q)) = 1.254435359..., where P(k) = A006530(k) is the greatest prime dividing k for k >= 2, and P(1) = 1.
%e Fractions begin: 1/2, 1, 3/2, 11/6, 7/3, 17/6, 10/3, 11/3, 25/6, 9/2, 5, 16/3, ...
%t p2[c_] := Module[{f = FactorInteger[c]}, If[f[[-1, 2]] > 1, f[[-1, 1]], f[[-2, 1]]]]; Numerator@ Accumulate[Table[1/p2[c], {c, Select[Range[100], CompositeQ]}]]
%o (PARI) lista(nmax) = {my(s = 0); forcomposite(n = 1, nmax, f = factor(n); s += if(f[#f~, 2] > 1, 1/f[#f~, 1], 1/f[#f~ - 1, 1]); print1(numerator(s), ", "));}
%Y Cf. A006530, A087039, A087040, A378681 (denominators).
%K nonn,easy,frac,new
%O 1,3
%A _Amiram Eldar_, Dec 03 2024