login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250034
Numerators a(n) of the rational-valued function s(n) defined below.
4
1, 3, 11, 7, 38, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 1839778, 2009948, 38444267, 41354174, 43432679, 46078049, 1064644972, 379669754, 387106183, 407127338, 1258564159, 1322304979, 38458390826, 40830611677, 1268983808602
OFFSET
1,2
COMMENTS
a(n) is the numerator (after normalization) of the rational function s(n) = 1-sum(k>0,(-1)^k*sum(p1<p2<..<pk,floor(n/(p1*p2*..*pk))/(p1*p2*..*pk))), with p1,p2,..,pk being any k-tuplet of increasing prime numbers. The denominators of s(n) appear to coincide with A072155 (tested up to n=10000). For more information, see also A250031 and A250032.
LINKS
S. Sykora, On some number densities related to coprimes, Stan's Library, Vol.V, Nov 2014, DOI: 10.3247/SL5Math14.005
EXAMPLE
n=4: s(4) = 1 - (-1)*(floor(4/2)/2 + floor(4/3)/3) = 1 + 1 + 1/3 = 7/3, with a(4) = 7 and 3 is indeed A072155(4). - Wolfdieter Lang, Dec 02 2014
PROG
(PARI) s_aux(n, p0, inp)={my(t=0/1, tt=0/1, in=inp, pp); while(1, pp=p0*prime(in); tt=n\pp; if(tt==0, break, t+=tt/pp-s_aux(n, pp, in++))); return(t)};
s(n)=1+s_aux(n, 1, 1);
a=vector(1000, n, numerator(s(n)))
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Stanislav Sykora, Nov 16 2014
STATUS
approved