OFFSET
1,2
COMMENTS
a(n) is the numerator (after normalization) of the rational function s(n) = 1-sum(k>0,(-1)^k*sum(p1<p2<..<pk,floor(n/(p1*p2*..*pk))/(p1*p2*..*pk))), with p1,p2,..,pk being any k-tuplet of increasing prime numbers. The denominators of s(n) appear to coincide with A072155 (tested up to n=10000). For more information, see also A250031 and A250032.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..1000
S. Sykora, On some number densities related to coprimes, Stan's Library, Vol.V, Nov 2014, DOI: 10.3247/SL5Math14.005
EXAMPLE
n=4: s(4) = 1 - (-1)*(floor(4/2)/2 + floor(4/3)/3) = 1 + 1 + 1/3 = 7/3, with a(4) = 7 and 3 is indeed A072155(4). - Wolfdieter Lang, Dec 02 2014
PROG
(PARI) s_aux(n, p0, inp)={my(t=0/1, tt=0/1, in=inp, pp); while(1, pp=p0*prime(in); tt=n\pp; if(tt==0, break, t+=tt/pp-s_aux(n, pp, in++))); return(t)};
s(n)=1+s_aux(n, 1, 1);
a=vector(1000, n, numerator(s(n)))
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Stanislav Sykora, Nov 16 2014
STATUS
approved