OFFSET
0,2
FORMULA
G.f.: exp( 2/3 * Sum_{k>=1} A378612(k) * x^k/k ).
G.f.: B(x)^2 where B(x) is the g.f. of A243659.
a(n) = 2 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(3*n+k+2,n)/(3*n+k+2).
a(n) = 2 * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(n-1,n-k)/(3*n+k+2).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^2/(1 - x*A(x)^(3/2)) )^2.
PROG
(PARI) a(n) = 2*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(3*n+k+2, n)/(3*n+k+2));
(PARI) a(n, r=2, s=1, t=4, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 02 2024
STATUS
approved