login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118791
Triangle where T(n,k) = -n!*[x^k] ( x/log(1-x-x^2) )^(n+1), for n>=k>=0, read by rows.
2
1, -1, 3, 2, -9, 19, -6, 36, -103, 207, 24, -180, 650, -1605, 3211, -120, 1080, -4710, 13860, -32191, 64383, 720, -7560, 38640, -132300, 351722, -790629, 1581259, -5040, 60480, -354480, 1386000, -4163166, 10433556, -22974463, 45948927, 40320, -544320, 3598560, -15830640, 53117064
OFFSET
0,3
COMMENTS
[0, diagonal] = A052886 with e.g.f.: (1-sqrt(5-4*exp(x)))/2. [0, row sums] = A117271 with e.g.f.: log((3-sqrt(5-4*exp(x)))/2). [0, unsigned row sums] = A118792 with e.g.f.: -log((1+sqrt(5-4*exp(x)))/2). Here [0, sequence] indicates that the sequence is offset with a leading zero.
EXAMPLE
Triangle begins:
1;
-1, 3;
2,-9, 19;
-6, 36,-103, 207;
24,-180, 650,-1605, 3211;
-120, 1080,-4710, 13860,-32191, 64383;
720,-7560, 38640,-132300, 351722,-790629, 1581259;
-5040, 60480,-354480, 1386000,-4163166, 10433556,-22974463, 45948927;
which is formed from the powers of F(x) = x/log(1-x-x^2):
F(x)^1 = (-1) + 3/2*x - 11/12*x^2 + 9/8*x^3 - 641/720*x^4 +...
F(x)^2 = ( 1 - 3*x)/1! + 49/12*x^2 - 5*x^3 + 1439/240*x^4 +...
F(x)^3 = (-2 + 9*x - 19*x^2)/2! + 15*x^3 - 5161/240*x^4 +...
F(x)^4 = ( 6 - 36*x + 103*x^2 - 207*x^3)/3! + 42239/720*x^4 +...
F(x)^5 = (-24 + 180*x - 650*x^2 + 1605*x^3 - 3211*x^4)/4! +...
PROG
(PARI) {T(n, k)=local(x=X+X^2*O(X^(k+2))); -n!*polcoeff(((x/log(1-x-x^2)))^(n+1), k, X)}
CROSSREFS
Cf. A052886 (diagonal), A117271 (row sums), A118792 (unsigned row sums); A118793 (variant).
Sequence in context: A154343 A049969 A088634 * A234840 A234743 A284989
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Apr 30 2006
STATUS
approved