login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

S(n,k) an additive decomposition of the Springer number (generalized Euler number), (triangle read by rows).
6

%I #15 Sep 13 2016 02:54:01

%S 1,3,-2,9,-16,4,27,-98,60,0,81,-544,616,0,-96,243,-2882,5400,0,-3360,

%T 960,729,-14896,43564,0,-72480,46080,-5760,2187,-75938,334740,0,

%U -1246560,1323840,-362880,0,6561,-384064,2495056,0,-18801216,29675520

%N S(n,k) an additive decomposition of the Springer number (generalized Euler number), (triangle read by rows).

%C The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1/2 and multiplied by 2^n these polynomials result in a decomposition of the Springer numbers A001586.

%H G. C. Greubel, <a href="/A154343/b154343.txt">Table of n, a(n) for n = 0..1274</a>

%H Peter Luschny, <a href="http://www.luschny.de/math/seq/SwissKnifePolynomials.html">The Swiss-Knife polynomials.</a>

%F Let c(k) = frac{(-1)^{floor(k/4)}{2^{floor(k/2)}} [4 not div k] (Iverson notation).

%F S(n,k) = Sum_{v=0,..,k} ( (-1)^(v)*binomial(k,v)*2^n*c(k)*(v+3/2)^n );

%F S(n) = Sum_{k=0,..,n} S(n,k).

%e 1,

%e 3, -2,

%e 9, -16, 4,

%e 27, -98, 60, 0,

%e 81, -544, 616, 0, -96,

%e 243, -2882, 5400, 0, -3360, 960,

%e 729, -14896, 43564, 0, -72480, 46080, -5760,

%e 2187, -75938, 334740, 0, -1246560, 1323840, -362880, 0,

%e 6561, -384064, 2495056, 0, -18801216, 29675520, -13386240, 0, 645120.

%p S := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*2^n*c(k)*(v+3/2)^n,v=0..k) end: seq(print(seq(S(n,k),k=0..n)),n=0..8);

%t c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; s[n_, k_] := Sum[(-1)^v*Binomial[k, v]*2^n*c[k]*(v+3/2)^n, {v, 0, k}]; Table[s[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2013, after Maple *)

%Y Cf. A153641, A154341, A154342, A154344, A154345.

%K easy,sign,tabl

%O 0,2

%A _Peter Luschny_, Jan 07 2009