login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-convolution square-root of A005810, where A005810(n) = binomial(4*n,n).
0

%I #5 Mar 30 2012 18:37:37

%S 1,2,12,86,666,5388,44832,380424,3275172,28512248,250413856,

%T 2215112886,19711078686,176276723508,1583186541144,14271487891512,

%U 129063176166570,1170480053359908,10641805703955624,96970507481607972,885397365149468076,8098908925136867112

%N Self-convolution square-root of A005810, where A005810(n) = binomial(4*n,n).

%F G.f.: A(x) = sqrt( G(x)/(4 - 3*G(x)) ) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. [From a formula by Mark van Hoeij in A005810]

%e G.f.: A(x) = 1 + 2*x + 12*x^2 + 86*x^3 + 666*x^4 + 5388*x^5 +...

%e The square of the g.f. equals the g.f. of A005810:

%e A(x)^2 = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 +...

%e The g.f. of A002293 is G(x) = 1 + x*G(x)^4:

%e G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...

%o (PARI) {a(n)=polcoeff(sum(k=0,n,binomial(4*k,k)*x^k +x*O(x^n))^(1/2),n)}

%o for(n=0,41,print1(a(n),", "))

%Y Cf. A005810, A002293.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 03 2012