Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Sep 08 2022 08:44:50
%S 1,-1,-1,-1,1,2,-1,2,0,0,-1,-1,-1,-1,0,1,-1,-1,2,0,1,2,1,-1,0,-1,2,-1,
%T 0,-1,-1,0,-1,-1,0,-1,-2,2,2,0,-1,1,0,1,0,-1,2,2,1,0,-2,2,-1,0,-1,-1,
%U -1,1,-1,0,0,-1,-1,-1,0,0,2,-2,-1,0,-1,1,2,2,0,0
%N Expansion of q^(-1/6) * eta(q) * eta(q^3) in powers of q.
%C Number 65 of the 74 eta-quotients listed in Table I of Martin (1996).
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%H Seiichi Manyama, <a href="/A030203/b030203.txt">Table of n, a(n) for n = 0..10000</a>
%H S. R. Finch, <a href="http://arXiv.org/abs/math.NT/0701251">Powers of Euler's q-Series</a>, (arXiv:math.NT/0701251).
%H M. Koike, <a href="http://projecteuclid.org/euclid.nmj/1118787564">On McKay's conjecture</a>, Nagoya Math. J., 95 (1984), 85-89.
%H Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of f(-x) * f(-x^3) where f(-x) := f(-x, -x^2) is a Ramanujan theta function. - _Michael Somos_, Jul 27 2006
%F Expansion of q^(-1/6) * sqrt(b(q) * c(q)/3) in powers of q where b(), c() are cubic AGM theta functions. - _Michael Somos_, Nov 01 2006
%F Euler transform of period 3 sequence [ -1, -1, -2, ...]. - _Michael Somos_, Jul 27 2006
%F Given g.f. A(x), then B(q) = (q * A(q^6))^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 - u^2*w - 4*u*w^2. - _Michael Somos_, Jul 27 2006
%F a(n) = b(6*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6), b(p^e) = e+1 if p = x^2 + 27*y^2, b(p^e) = [1, -1, 0] depending on e (mod 3) otherwise.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 108^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - _Michael Somos_, Jan 22 2012
%F G.f.: Product_{k>0} (1 - x^k) * (1 - x^(3*k)).
%e G.f. = 1 - x - x^2 - x^3 + x^4 + 2*x^5 - x^6 + 2*x^7 - x^10 - x^11 - x^12 - x^13 + ...
%e G.f. = q - q^7 - q^13 - q^19 + q^25 + 2*q^31 - q^37 + 2*q^43 - q^61 - q^67 - ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^3], {x, 0, n}]; (* _Michael Somos_, Jan 31 2015 *)
%o (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, (1 + (-1)^e) / 2, (p-1) / znorder( Mod(2, p))%3, kronecker( e+1, 3), e+1)))}; /* _Michael Somos_, Jul 27 2006 */
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A), n))}; /* _Michael Somos_, Jul 27 2006 */
%o (Magma) Basis( CuspForms( Gamma1(108), 1), 452)[1]; /* _Michael Somos_, Jan 31 2015 */
%K sign
%O 0,6
%A _N. J. A. Sloane_.