login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030197
McKay-Thompson series of class 3A for the Monster group with a(0) = 42.
16
1, 42, 783, 8672, 65367, 371520, 1741655, 7161696, 26567946, 90521472, 288078201, 864924480, 2469235686, 6748494912, 17746495281, 45086909440, 111066966315, 266057139456, 621284327856, 1417338712800, 3164665156308
OFFSET
-1,2
COMMENTS
(1 + 42x + 783x^2 + 8672x^3 + ...) is the convolution square of (1 + 21x + 171x^2 + 745x^3 + ...), where A007261 = (1, 21, 171, 745, 2418, ...). - Gary W. Adamson, Jul 21 2009
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
N. D. Elkies, Elliptic and modular curves..., in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 39.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253-278
FORMULA
Expansion of Hauptmodul for X_0^{+}(3).
Expansion of (h + 27)^2 / h, where h = (eta(q) / eta(q^3))^12.
Expansion of 27 * (b(q)^3 + c(q)^3)^2 / (b(q) * c(q))^3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012
Expansion of (a(q) / (eta(q) * eta(q^3)))^6 in powers of q where a() is a cubic AGM theta function. - Michael Somos, Dec 01 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 01 2013
a(n) ~ exp(4*Pi*sqrt(n/3)) / (sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 07 2015
EXAMPLE
G.f. = 1/q + 42 + 783*q + 8672*q^2 + 65367*q^3 + 371520*q^4 + 1741655*q^5 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q ((QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / ( QPochhammer[ q] QPochhammer[ q^3]^2))^6, {q, 0, n}]; (* Michael Somos, Dec 01 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( (1 + 27 * x * A)^2 / A, n))}; /* Michael Somos, Jun 16 2012 */
CROSSREFS
Apart from constant term, same as A007243, A045480.
Cf. A007261. - Gary W. Adamson, Jul 21 2009
Sequence in context: A333113 A252827 A231158 * A225980 A231164 A020933
KEYWORD
nonn,nice,easy
STATUS
approved