login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291337
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 2 S - 2 S^3.
2
1, 3, 10, 34, 115, 387, 1300, 4366, 14665, 49263, 165490, 555934, 1867555, 6273687, 21075220, 70798066, 237832225, 798950763, 2683918570, 9016098634, 30287816995, 101745987387, 341795711140, 1148195728966, 3857138603785, 12957301471863, 43527515777650
OFFSET
0,2
FORMULA
G.f.: (1 - 2*x + 2*x^2)/(1 - 5*x + 7*x^2 - 5*x^3).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) for n >= 4.
a(n) = (1/2)*A291005(n).
MATHEMATICA
z = 60; s = 1 - 2 s - 2 s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291005 *)
u / 2 (* A291337 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x+2*x^2)/(1-5*x+7*x^2-5*x^3) )); // G. C. Greubel, Jun 01 2023
(SageMath)
def A291337_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-2*x+2*x^2)/(1-5*x+7*x^2-5*x^3) ).list()
A291337_list(30) # G. C. Greubel, Jun 01 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 23 2017
STATUS
approved