login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291529 Number F(n,h,t) of forests of t (unlabeled) rooted identity trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows. 7
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 3, 0, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 5, 1, 0, 0, 5, 4, 0, 0, 4, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,49

COMMENTS

Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A227819.

Positive column sums per layer give A227774.

LINKS

Alois P. Heinz, Layers n = 0..48, flattened

FORMULA

Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A004111(n+1).

Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A291532(n).

Sum_{h=0..n-2} Sum_{t=1..n-1-h} (h+1) * F(n-1,h,t) = A291559(n).

F(n,0,0) = A000007(n).

EXAMPLE

n h\t: 0 1 2 3 4 5 : A227819 : A227774   : A004111

-----+-------------+---------+-----------+--------

0 0  : 1           :         :           : 1

-----+-------------+---------+-----------+--------

1 0  : 0 1         :       1 : .         :

1 1  : 0           :         : 1         : 1

-----+-------------+---------+-----------+--------

2 0  : 0 0 0       :       0 : . .       :

2 1  : 0 1         :       1 : .         :

2 2  : 0           :         : 1 0       : 1

-----+-------------+---------+-----------+--------

3 0  : 0 0 0 0     :       0 : . . .     :

3 1  : 0 0 1       :       1 : . .       :

3 2  : 0 1         :       1 : .         :

3 3  : 0           :         : 1 1 0     : 2

-----+-------------+---------+-----------+--------

4 0  : 0 0 0 0 0   :       0 : . . . .   :

4 1  : 0 0 0 0     :       0 : . . .     :

4 2  : 0 1 1       :       2 : . .       :

4 3  : 0 1         :       1 : .         :

4 4  : 0           :         : 2 1 0 0   : 3

-----+-------------+---------+-----------+--------

5 0  : 0 0 0 0 0 0 :       0 : . . . . . :

5 1  : 0 0 0 0 0   :       0 : . . . .   :

5 2  : 0 0 2 0     :       2 : . . .     :

5 3  : 0 2 1       :       3 : . .       :

5 4  : 0 1         :       1 : .         :

5 5  : 0           :         : 3 3 0 0 0 : 6

-----+-------------+---------+-----------+--------

MAPLE

b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0 or i=1,

      `if`(n<2, x^(t*n), 0), b(n, i-1, t, h)+add(x^(t*j)*binomial(

       b(i-1$2, 0, h-1), j)*b(n-i*j, i-1, t, h), j=1..n/i)))

    end:

g:= (n, h)-> b(n$2, 1, h)-`if`(h=0, 0, b(n$2, 1, h-1)):

F:= (n, h, t)-> coeff(g(n, h), x, t):

seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..10);

MATHEMATICA

b[n_, i_, t_, h_] := b[n, i, t, h] = Expand[If[n == 0 || h == 0 || i == 1, If[n < 2, x^(t*n), 0], b[n, i - 1, t, h] + Sum[x^(t*j)*Binomial[b[i - 1, i - 1, 0, h - 1], j]*b[n - i*j, i - 1, t, h], {j, 1, n/i}]]];

g[n_, h_] := b[n, n, 1, h] - If[h == 0, 0, b[n, n, 1, h - 1]];

F[n_, h_, t_] := Coefficient[g[n, h], x, t];

Table[F[n, h, t], {n, 0, 10}, {h, 0, n}, {t, 0, n - h}] // Flatten (* Jean-Fran├žois Alcover, Jun 04 2018, from Maple *)

CROSSREFS

Cf. A000007, A004111, A227774, A227819, A291203, A291204, A291336, A291532, A291559.

Sequence in context: A238354 A161364 A143620 * A236417 A238304 A219487

Adjacent sequences:  A291526 A291527 A291528 * A291530 A291531 A291532

KEYWORD

nonn,look,tabf

AUTHOR

Alois P. Heinz, Aug 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 10 15:20 EDT 2020. Contains 335576 sequences. (Running on oeis4.)