login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236417
a(n) = |{0 < k < n: p = phi(k)/2 + phi(n-k)/12 + 1 and A047967(p) are both prime}|.
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 3, 1, 0, 1, 1, 1, 2, 1, 2, 0, 1, 2, 2, 2, 1, 2, 1, 1, 3, 1, 1, 4, 2, 0, 1, 3, 2, 2, 0, 2, 2, 4, 2, 3, 0, 3, 2
OFFSET
1,56
COMMENTS
Conjecture: a(n) > 0 for all n > 98.
We have verified this for n up to 36000.
The conjecture implies that there are infinitely many primes p with A047967(p) prime.
LINKS
EXAMPLE
a(36) = 1 since phi(23)/2 + phi(13)/12 + 1 = 13 with A047967(13) = 83 prime.
a(71) = 1 since phi(43)/2 + phi(28)/12 + 1 = 23 with A047967(23) = 1151 prime.
MATHEMATICA
pq[n_]:=PrimeQ[n]&&PrimeQ[PartitionsP[n]-PartitionsQ[n]]
f[n_, k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12+1
a[n_]:=Sum[If[pq[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 25 2014
STATUS
approved