The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236417 a(n) = |{0 < k < n: p = phi(k)/2 + phi(n-k)/12 + 1 and A047967(p) are both prime}|. 5
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 3, 1, 0, 1, 1, 1, 2, 1, 2, 0, 1, 2, 2, 2, 1, 2, 1, 1, 3, 1, 1, 4, 2, 0, 1, 3, 2, 2, 0, 2, 2, 4, 2, 3, 0, 3, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,56 COMMENTS Conjecture: a(n) > 0 for all n > 98. We have verified this for n up to 36000. The conjecture implies that there are infinitely many primes p with A047967(p) prime. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014 EXAMPLE a(36) = 1 since phi(23)/2 + phi(13)/12 + 1 = 13 with A047967(13) = 83 prime. a(71) = 1 since phi(43)/2 + phi(28)/12 + 1 = 23 with A047967(23) = 1151 prime. MATHEMATICA pq[n_]:=PrimeQ[n]&&PrimeQ[PartitionsP[n]-PartitionsQ[n]] f[n_, k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12+1 a[n_]:=Sum[If[pq[f[n, k]], 1, 0], {k, 1, n-1}] Table[a[n], {n, 1, 100}] CROSSREFS Cf. A000010, A000040, A047967. Sequence in context: A161364 A143620 A291529 * A238304 A219487 A303907 Adjacent sequences: A236414 A236415 A236416 * A236418 A236419 A236420 KEYWORD nonn AUTHOR Zhi-Wei Sun, Jan 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 31 01:17 EST 2023. Contains 359947 sequences. (Running on oeis4.)