login
A291532
Number of trees in all forests of (unlabeled) rooted identity trees with n vertices.
3
0, 1, 1, 3, 4, 9, 19, 40, 84, 186, 413, 922, 2082, 4733, 10831, 24928, 57648, 133923, 312393, 731328, 1717784, 4047111, 9561517, 22647521, 53770164, 127941813, 305046676, 728688803, 1743752229, 4179697971, 10034077377, 24123567285, 58076419495, 139996849639
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k>=1} k * A227774(n+1,k).
a(n) = Sum_{h=0..n} Sum_{t=0..n-h} t * A291529(n,h,t).
EXAMPLE
a(4) = 4:
: o : o o : o :
: | : | : / \ :
: o : o : o o :
: | : | : | :
: o : o : o :
: | : : :
: o : : :
: : : :
MAPLE
b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1,
`if`(n<2, x^(t*n), 0), b(n, i-1, t)+add(binomial(
b(i-1$2, 0), j)*x^(t*j)*b(n-i*j, i-1, t), j=1..n/i)))
end:
a:= n-> (p-> add(i*coeff(p, x, i), i=1..degree(p)))(b(n$2, 1)):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0 || i == 1,
If[n < 2, x^(t*n), 0], b[n, i - 1, t] + Sum[Binomial[
b[i - 1, i - 1, 0], j]*x^(t*j)*b[n - i*j, i - 1, t], {j, 1, n/i}]]];
a[n_] := Function[p, Sum[i*Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][
b[n, n, 1]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 25 2017
STATUS
approved