login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291532
Number of trees in all forests of (unlabeled) rooted identity trees with n vertices.
3
0, 1, 1, 3, 4, 9, 19, 40, 84, 186, 413, 922, 2082, 4733, 10831, 24928, 57648, 133923, 312393, 731328, 1717784, 4047111, 9561517, 22647521, 53770164, 127941813, 305046676, 728688803, 1743752229, 4179697971, 10034077377, 24123567285, 58076419495, 139996849639
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k>=1} k * A227774(n+1,k).
a(n) = Sum_{h=0..n} Sum_{t=0..n-h} t * A291529(n,h,t).
EXAMPLE
a(4) = 4:
: o : o o : o :
: | : | : / \ :
: o : o : o o :
: | : | : | :
: o : o : o :
: | : : :
: o : : :
: : : :
MAPLE
b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1,
`if`(n<2, x^(t*n), 0), b(n, i-1, t)+add(binomial(
b(i-1$2, 0), j)*x^(t*j)*b(n-i*j, i-1, t), j=1..n/i)))
end:
a:= n-> (p-> add(i*coeff(p, x, i), i=1..degree(p)))(b(n$2, 1)):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0 || i == 1,
If[n < 2, x^(t*n), 0], b[n, i - 1, t] + Sum[Binomial[
b[i - 1, i - 1, 0], j]*x^(t*j)*b[n - i*j, i - 1, t], {j, 1, n/i}]]];
a[n_] := Function[p, Sum[i*Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][
b[n, n, 1]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 25 2017
STATUS
approved