login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291534 Expansion of the series reversion of x/((1 + x)*(1 - x^2)). 0
1, 1, 0, -3, -7, -4, 24, 85, 99, -215, -1196, -2100, 1420, 17512, 42160, 9477, -252073, -815965, -736456, 3365813, 15248793, 22861712, -37036000, -273657748, -575046252, 180950476, 4658415696, 13042693000, 6717278152, -73400374512, -275797704864, -321427878811, 1012425395135 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Reversion of g.f. for the canonical enumeration of integers (A001057).
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
G.f. A(x) satisfies: A(x)/((1 + A(x))*(1 - A(x)^2)) = x.
a(n) = hypergeom([(1 - n)/2, 1 - n/2, -n], [1, 3/2], 1). - Vladimir Reshetnikov, Oct 15 2018
From Vladimir Reshetnikov, Oct 18 2018: (Start)
G.f.: 2^(1/3)*(6 - 8*x - 2^(1/3)*t^2)/(6*sqrt(x)*t), where t = (3*sqrt(12 - 39*x + 96*x^2) - (9 + 16*x)*sqrt(x))^(1/3).
D-finite with recurrence: 64*n*(n + 1)*(2*n + 1)*a(n) - 4*(n + 1)*(37*n^2 + 134*n + 120)*a(n + 1) + (n + 2)*(55*n^2 + 235*n + 240)*a(n + 2) - 2*(6*n + 21)*(n + 2)*(n + 3)*a(n + 3) = 0. (End)
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x/((1 + x) (1 - x^2)), {x, 0, 33}], x], x]]
Table[HypergeometricPFQ[{(1 - n)/2, 1 - n/2, -n}, {1, 3/2}, 1], {n, 1, 33}] (* Vladimir Reshetnikov, Oct 15 2018 *)
CROSSREFS
Sequence in context: A324184 A114691 A023639 * A331733 A301755 A302558
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 25 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 22:19 EDT 2023. Contains 363151 sequences. (Running on oeis4.)