login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331733
a(n) = sigma(A225546(n)), where sigma is the sum of divisors.
8
1, 3, 7, 4, 31, 15, 511, 12, 13, 63, 131071, 28, 8589934591, 1023, 127, 6, 36893488147419103231, 39, 680564733841876926926749214863536422911, 124, 2047, 262143, 231584178474632390847141970017375815706539969331281128078915168015826259279871, 60, 121, 17179869183, 91, 2044
OFFSET
1,2
FORMULA
a(n) = A000203(A225546(n)).
For all n >= 1, A000035(a(A016754(n))) = 1. [Result is odd for all odd squares]
MATHEMATICA
Array[If[# == 1, 1, DivisorSigma[1, #] &@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 28] (* Michael De Vlieger, Feb 08 2020 *)
PROG
(PARI)
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
A331733(n) = if(1==n, 1, my(f=factor(n), u=#binary(vecmax(f[, 2])), prods=vector(u, x, 1), m=1, e); for(i=1, u, for(k=1, #f~, if(bitand(f[k, 2], m), prods[i] *= f[k, 1])); m<<=1); prod(i=1, u, (prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1)));
CROSSREFS
Cf. A323243, A323173, A324054, A324184, A324545 for other permutations of sigma, and also A324573, A324653.
Sequence in context: A114691 A023639 A291534 * A301755 A302558 A193506
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 02 2020
STATUS
approved