login
A324054
a(n) = A000203(A005940(1+n)).
29
1, 3, 4, 7, 6, 12, 13, 15, 8, 18, 24, 28, 31, 39, 40, 31, 12, 24, 32, 42, 48, 72, 78, 60, 57, 93, 124, 91, 156, 120, 121, 63, 14, 36, 48, 56, 72, 96, 104, 90, 96, 144, 192, 168, 248, 234, 240, 124, 133, 171, 228, 217, 342, 372, 403, 195, 400, 468, 624, 280, 781, 363, 364, 127, 18, 42, 56, 84, 84, 144, 156, 120, 112, 216, 288, 224
OFFSET
0,2
COMMENTS
As noted by David A. Corneth, the function f(n) = a(n-1) [that is, the offset-1 version of this sequence] seems to be "almost multiplicative". Sequence A324109 gives the positions n where f(n) satisfies the multiplicativity in a sense that f(n) = f(p(1)^e(1)) * ... * f(p(k)^e(k)), when n = p(1)^e(1) * ... * p(k)^e(k), and A324110 the positions where this does not hold.
LINKS
Michael De Vlieger, Annotated fan-style binary tree diagram showing 16 levels, where blue represents A336834(n) = 1 and yellow A336834(n) = 0. Labels are a(n) for the 8 smallest levels.
FORMULA
a(n) = A000203(A005940(1+n)).
a(n) = A324056(n) * A038712(1+n).
MATHEMATICA
nn = 76; a[0] = 1; Do[Set[a[n], Prime[1 + DigitCount[n, 2, 0]]*a[n - 2^Floor@ Log2@ n]], {n, nn}]; Array[DivisorSigma[1, a[#]] &, nn, 0] (* Michael De Vlieger, Aug 03 2022 *)
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
A324054(n) = sigma(A005940(1+n));
(PARI) A324054(n) = { my(p=2, mp=p*p, m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4), mp *= p, m *= (mp-1)/(p-1))); n>>=1); (m); };
(Python)
from math import prod
from itertools import accumulate
from collections import Counter
from sympy import prime
def A324054(n): return prod(((p:=prime(len(a)+1))**(b+1)-1)//(p-1) for a, b in Counter(accumulate(bin(n)[2:].split('1')[:0:-1])).items()) # Chai Wah Wu, Mar 10 2023
CROSSREFS
Cf. also A106737, A290077 (tau and phi similarly permuted).
Sequence in context: A003981 A360674 A324108 * A214413 A214409 A215509
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 14 2019
STATUS
approved