OFFSET
1,2
COMMENTS
Reversion of g.f. for the Lucas numbers (beginning with 1) (A000204).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..500
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
G.f. A(x) satisfies: A(x)*(1 + 2*A(x))/(1 - A(x) - A(x)^2) = x.
a(n) ~ -(-1)^n * 5^((n+1)/2) * phi^(3*n - 9/2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 11 2017
D-finite with recurrence 2*n*a(n) +3*(7*n-10)*a(n-1) +5*(4*n-9)*a(n-2) +5*(n-3)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x (1 + 2 x)/(1 - x - x^2), {x, 0, 23}], x], x]]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 25 2017
STATUS
approved