login
A291535
Expansion of the series reversion of x*(1 + 2*x)/(1 - x - x^2).
2
1, -3, 14, -82, 541, -3833, 28479, -218927, 1726651, -13893013, 113594944, -941109972, 7883133111, -66651214993, 568062130934, -4875322862342, 42097583306171, -365467693020273, 3188024056471074, -27929166139563662, 245625484632281831, -2167751159576883103, 19192382951736683739
OFFSET
1,2
COMMENTS
Reversion of g.f. for the Lucas numbers (beginning with 1) (A000204).
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
G.f. A(x) satisfies: A(x)*(1 + 2*A(x))/(1 - A(x) - A(x)^2) = x.
a(n) ~ -(-1)^n * 5^((n+1)/2) * phi^(3*n - 9/2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 11 2017
D-finite with recurrence 2*n*a(n) +3*(7*n-10)*a(n-1) +5*(4*n-9)*a(n-2) +5*(n-3)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x (1 + 2 x)/(1 - x - x^2), {x, 0, 23}], x], x]]
CROSSREFS
Sequence in context: A032332 A032080 A367078 * A333956 A194091 A186737
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 25 2017
STATUS
approved