Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Mar 17 2022 11:38:38
%S 1,0,1,0,0,0,1,0,1,0,0,0,0,1,0,1,3,0,1,0,0,0,0,0,1,0,1,7,6,0,4,4,0,1,
%T 0,0,0,0,0,0,1,0,1,15,25,10,0,14,30,10,0,8,5,0,1,0,0,0,0,0,0,0,1,0,1,
%U 31,90,65,15,0,51,174,120,20,0,54,63,15,0,13,6,0,1,0
%N Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that the root of each subtree contains the subtree's minimal label and h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.
%C Elements in rows h=0 give A023531.
%C Positive elements in rows h=1 give A008277.
%C Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A179454.
%C Positive column sums per layer give A132393.
%H Alois P. Heinz, <a href="/A291204/b291204.txt">Layers n = 0..48, flattened</a>
%F Sum_{i=0..n} F(n,i,n-i) = A000325(n).
%F Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000142(n).
%F Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A000254(n).
%F Sum_{t=0..n-1} F(n,1,t) = A058692(n) = A000110(n) - 1.
%F F(2n,n,n) = A001791(n) for n>0.
%F F(2n,1,n) = A007820(n).
%F F(n,1,n-1) = A000217(n-1) for n>0.
%F F(n,n-1,1) = A057427(n).
%F F(n,1,2) = A000225(n-1) for n>2.
%F F(n,0,n) = 1 = A000012(n).
%F F(n,0,0) = A000007(n).
%e n h\t: 0 1 2 3 4 5 : A179454 : A132393 : A000142
%e -----+-----------------+---------+---------------+--------
%e 0 0 : 1 : 1 : 1 : 1
%e -----+-----------------+---------+---------------+--------
%e 1 0 : 0 1 : 1 : . :
%e 1 1 : 0 : : 1 : 1
%e -----+-----------------+---------+---------------+--------
%e 2 0 : 0 0 1 : 1 : . . :
%e 2 1 : 0 1 : 1 : . :
%e 2 2 : 0 : : 1 1 : 2
%e -----+-----------------+---------+---------------+--------
%e 3 0 : 0 0 0 1 : 1 : . . . :
%e 3 1 : 0 1 3 : 4 : . . :
%e 3 2 : 0 1 : 1 : . :
%e 3 3 : 0 : : 2 3 1 : 6
%e -----+-----------------+---------+---------------+--------
%e 4 0 : 0 0 0 0 1 : 1 : . . . . :
%e 4 1 : 0 1 7 6 : 14 : . . . :
%e 4 2 : 0 4 4 : 8 : . . :
%e 4 3 : 0 1 : 1 : . :
%e 4 4 : 0 : : 6 11 6 1 : 24
%e -----+-----------------+---------+---------------+--------
%e 5 0 : 0 0 0 0 0 1 : 1 : . . . . . :
%e 5 1 : 0 1 15 25 10 : 51 : . . . . :
%e 5 2 : 0 14 30 10 : 54 : . . . :
%e 5 3 : 0 8 5 : 13 : . . :
%e 5 4 : 0 1 : 1 : . :
%e 5 5 : 0 : : 24 50 35 10 1 : 120
%e -----+-----------------+---------+---------------+--------
%p b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
%p binomial(n-1, j-1)*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
%p end:
%p g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
%p F:= (n, h, t)-> coeff(g(n, h), x, t):
%p seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
%t b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[Binomial[n-1, j-1]*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
%t g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
%t F[n_, h_, t_] := Coefficient[g[n, h], x, t];
%t Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Mar 17 2022, after _Alois P. Heinz_ *)
%Y Cf. A000007, A000012, A000110, A000142, A000217, A000225, A000254, A000325, A001791, A007820, A008277, A023531, A048993, A057427, A058692, A179454, A291203, A291336, A291529.
%K nonn,look,tabf
%O 0,17
%A _Alois P. Heinz_, Aug 20 2017