OFFSET
0,13
FORMULA
G.f. of column k: 1/(1 + x/(1 - 2^k*x/(1 + 3^k*x/(1 - 4^k*x/(1 + 5^k*x/(1 - ...)))))), a continued fraction.
EXAMPLE
G.f. of column k: A_k(x) = 1 - x + (1 - 2^k)*x^2 + (2^(k + 1) - 4^k + 6^k - 1)*x^3 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
0, -1, -3, -7, -15, -31, ...
1, 5, 27, 167, 1071, 6815, ...
0, 17, 441, 10673, 262305, 6525377, ...
-2, -121, -11529, -1337713, -161721441, -19802585281, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(-1)^i i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Aug 21 2017
STATUS
approved