

A318521


Decimal expansion of sqrt(5^(1/3)4^(1/3)).


1



3, 5, 0, 1, 0, 6, 9, 7, 6, 0, 9, 2, 3, 0, 4, 5, 5, 6, 9, 2, 6, 1, 7, 0, 9, 0, 5, 6, 0, 6, 5, 9, 8, 2, 5, 8, 9, 4, 8, 2, 8, 6, 8, 6, 6, 3, 6, 3, 1, 9, 1, 6, 3, 1, 9, 8, 1, 2, 5, 5, 6, 8, 1, 6, 2, 8, 6, 8, 2, 5, 5, 8, 0, 8, 3, 1, 6, 9, 3, 3, 8, 7, 1, 6, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Ramanujan's question 525 (i), see Berndt and Rankin in References: Show how to find the square roots of surds of the form A^(1/3) + B^(1/3), and hence prove that sqrt(5^(1/3)4^(1/3)) = (2^(1/3)+20^(1/3)25^(1/3))/3.


REFERENCES

B. C. Berndt and R. A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, 2001, ISBN 0821826247, page 221 (JIMS 6, page 39 and pages 191192).
Susan Landau, "Simplification of nested radicals." SIAM Journal on Computing 21.1 (1992): 85110. See page 85. [Do not confuse this paper with the short FOCS conference paper with the same title, which is only a few pages long.]
S. Ramanujan, Coll. Papers, Chelsea, 1962, page 327, Question 525.


LINKS

Table of n, a(n) for n=0..84.


EXAMPLE

0.35010697609230455692617090560659825894828686636319163198125568162868255...


MAPLE

evalf(sqrt(5^(1/3)4^(1/3))); # Muniru A Asiru, Aug 28 2018


PROG

(PARI) sqrt(5^(1/3)4^(1/3))


CROSSREFS

Cf. A318522.
Sequence in context: A113037 A063866 A059106 * A087676 A291207 A058813
Adjacent sequences: A318518 A318519 A318520 * A318522 A318523 A318524


KEYWORD

nonn,cons


AUTHOR

Hugo Pfoertner, Aug 28 2018


STATUS

approved



