login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059106 Number of solutions to Nickerson variant of Langford (or Langford-Skolem) problem. 8
1, 0, 0, 3, 5, 0, 0, 252, 1328, 0, 0, 227968, 1520280, 0, 0, 700078384, 6124491248, 0, 0, 5717789399488, 61782464083584, 0, 0, 102388058845620672, 1317281759888482688, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

How many ways are of arranging the numbers 1,1,2,2,3,3,...,n,n so that there are zero numbers between the two 1's, one number between the two 2's, ..., n-1 numbers between the two n's?

For n>1, a(n) = A004075(n)/2 because A004075 also counts reflected solutions. - Martin Fuller, Mar 08 2007

Because of symmetry, is a(5) = 5 the largest prime in this sequence? - Jonathan Vos Post, Apr 02 2011

LINKS

Table of n, a(n) for n=1..27.

Ali Assarpour, Amotz Bar-Noy, Ou Liuo, Counting the Number of Langford Skolem Pairings, arXiv:1507.00315 [cs.DM], 2015.

J. E. Miller, Langford's Problem

R. S. Nickerson and D. C. B. Marsh, E1845: A variant of Langford's Problem, American Math. Monthly, 1967, 74, 591-595.

EXAMPLE

For n=4 a solution is 42324311.

CROSSREFS

Cf. A014552, A050998, A059107, A059108.

Cf. A004075, A268535.

Sequence in context: A230424 A113037 A063866 * A087676 A058813 A132701

Adjacent sequences:  A059103 A059104 A059105 * A059107 A059108 A059109

KEYWORD

nonn,nice,hard,more

AUTHOR

N. J. A. Sloane, Feb 14 2001

EXTENSIONS

a(20)-a(23) from Mike Godfrey (m.godfrey(AT)umist.ac.uk), Mar 14 2002

Extended using results from the Assarpour et al. (2015) paper by N. J. A. Sloane, Feb 22 2016 at the suggestion of William Rex Marshall.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 05:58 EDT 2017. Contains 288813 sequences.