login
A336018
a(n) = floor(frac(log_2(n))*n), where frac denotes the fractional part.
3
0, 0, 1, 0, 1, 3, 5, 0, 1, 3, 5, 7, 9, 11, 13, 0, 1, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 29, 0, 1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, 0, 1, 2, 4, 5, 7, 9, 10, 12, 13
OFFSET
1,6
FORMULA
a(n) = floor((log_2(n) - floor(log_2(n)))*n).
From Alois P. Heinz, Jan 04 2021: (Start)
a(n) = A326299(n) - A340301(n).
a(n) = 0 <=> n in { A000079 }. (End)
MAPLE
a:= n-> floor(n*log[2](n))-n*ilog2(n):
seq(a(n), n=1..80); # Alois P. Heinz, Jan 04 2021
MATHEMATICA
a[n_]:=Floor[FractionalPart[Log[2, n]]*n];
Table[a[n], {n, 1, 100}]
PROG
(PARI) a(n) = floor(n*frac(log(n)/log(2))); \\ Michel Marcus, Jul 07 2020
(Python)
def A336018(n):
return len(bin(n**n//(2**((len(bin(n))-3)*n))))-3 # Chai Wah Wu, Jul 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Jul 04 2020
STATUS
approved