login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336018
a(n) = floor(frac(log_2(n))*n), where frac denotes the fractional part.
3
0, 0, 1, 0, 1, 3, 5, 0, 1, 3, 5, 7, 9, 11, 13, 0, 1, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 29, 0, 1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, 0, 1, 2, 4, 5, 7, 9, 10, 12, 13
OFFSET
1,6
FORMULA
a(n) = floor((log_2(n) - floor(log_2(n)))*n).
From Alois P. Heinz, Jan 04 2021: (Start)
a(n) = A326299(n) - A340301(n).
a(n) = 0 <=> n in { A000079 }. (End)
MAPLE
a:= n-> floor(n*log[2](n))-n*ilog2(n):
seq(a(n), n=1..80); # Alois P. Heinz, Jan 04 2021
MATHEMATICA
a[n_]:=Floor[FractionalPart[Log[2, n]]*n];
Table[a[n], {n, 1, 100}]
PROG
(PARI) a(n) = floor(n*frac(log(n)/log(2))); \\ Michel Marcus, Jul 07 2020
(Python)
def A336018(n):
return len(bin(n**n//(2**((len(bin(n))-3)*n))))-3 # Chai Wah Wu, Jul 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Jul 04 2020
STATUS
approved