OFFSET
1,1
COMMENTS
More sequences can be generated by replacing the digit 1 by any integers of the form 3x+1. However, the sequence won't be as interesting if the following digits (the 3's) are replaced by any other digits.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20004
FORMULA
I have proved the following properties:
For n=12x+1, a(n)=7.
For n=12x+2, a(n)=7.
For n=12x+3, a(n)=11.
For n=12x+4, a(n)=9.
For n=12x+5, a(n)=7.
For n=12x+6, a(n)=17.
For n=12x+7, a(n)=7.
For n=12x+8, a(n)=7.
For n=12x+9, a(n)=11.
For n=12x+10, a(n)=9.
For n=12x+11, a(n)=7.
For n=12x, a(n) can be 17, 19, 23 or 25.
EXAMPLE
a(5)=7 because
133333 mod 2 = 1
133333 mod 3 = 1
133333 mod 4 = 1
133333 mod 5 = 3
133333 mod 6 = 1
133333 mod 7 = 4, which is the first time the result is even.
PROG
(Python)
n=1
a=13
while n<=1000:
c=2
while True:
if (a%c)%2==1:
c=c+1
else:
print(c, end=", ")
break
n=n+1
a=10*a+3
(PARI) f(n) = (4*10^n-1)/3; \\ A097166
a(n) = my(k=2); while ((f(n) % k) % 2, k++); k; \\ Michel Marcus, Jul 05 2020
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Yuan-Hao Huang, Jul 05 2020
STATUS
approved