Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 03 2017 03:20:02
%S 9,1,1,5,1,9,1,5,5,9,1,5,1,9,9,5,1,5,1,5,9,9,1,5,5,9,5,5,1,1,1,5,9,9,
%T 9,5,1,9,9,5,1,1,1,5,5,9,1,5,5,5,9,5,1,5,9,5,9,9,1,5,1,9,5,5,9,1,1,5,
%U 9,1,1,5,1,9,5,5,9,1,1,5,5,9,1,5,9,9,9
%N a(n) = 4*mu(n) + 5, where mu is the Moebius function (A008683).
%C If n is prime (A000040), then a(n) = 1. The converse is not true: when n is the product of an odd number of distinct primes, mu(n) = -1 => a(n) = 1 (30 = 2*3*5, so a(30) = 1).
%C If n is semiprime (A001358), a(n) gives the number of divisors of n^2. In particular, if n = p^2 then n^2 = (p^2)^2 = p^4 has 5 divisors: p^4, p^3, p^2, p, 1. If n = pq (p,q distinct primes) then n^2 = (pq)^2 has 9 divisors: (pq)^2, qp^2, pq^2, p^2, q^2, pq, p, q, and 1.
%C a(n) = 1 if and only if n has an odd number of distinct prime factors, A030059. - _Jon Perry_, Nov 12 2013.
%H Antti Karttunen, <a href="/A228409/b228409.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%e a(6) = 9; 4*mu(6) + 5 = 4*1 + 5 = 9.
%p with(numtheory); A228409:=n->4*mobius(n)+5; seq(A228409(n), n=1..100);
%t Table[4 MoebiusMu[n] + 5, {n, 100}]
%o (PARI) a(n)=4*moebius(n)+5 \\ _Charles R Greathouse IV_, Nov 12 2013
%o (Scheme) (define (A228409 n) (+ 5 (* 4 (A008683 n)))) ;; _Antti Karttunen_, Jul 26 2017
%Y Cf. A000040, A001358, A008683, A030059.
%K nonn,easy
%O 1,1
%A _Wesley Ivan Hurt_, Nov 09 2013