Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Jan 07 2022 12:03:47
%S 1,2,-26,366,-6270,99922,-1630730,-33526706,1685562866,-390576999182,
%T -2936125610490,-3666605533359442,-376235732409401630,
%U -85462222978639050222,-16821593963787582554986,-3977651379054471070911090,-1019617793745769995713403822,-288252359877865826549093001294,-89096129151626329798167571168346
%N E.g.f. A(x) satisfies: 1 + 4*x = exp(-1) * Sum_{n>=0} A(x)^(n^2) / n!.
%e E.g.f. A(x) = 1 + 2*x - 26*x^2/2! + 366*x^3/3! - 6270*x^4/4! + 99922*x^5/5! - 1630730*x^6/6! - 33526706*x^7/7! + 1685562866*x^8/8! - 390576999182*x^9/9! + ...
%e where
%e 1 + 4*x = exp(-1) * (1 + A(x) + A(x)^4/2! + A(x)^9/3! + A(x)^16/4! + A(x)^25/5! + A(x)^36/6! + A(x)^49/7! + ... + A(x)^(n^2)/n! + ...).
%e RELATED TABLE.
%e The table of coefficients of x^k/k! in A(x)^(n^2) begins:
%e n=0: [1, 0, 0, 0, 0, 0, 0, ...];
%e n=1: [1, 2, -26, 366, -6270, 99922, -1630730, ...];
%e n=2: [1, 8, -56, -216, 19800, -706472, 14847688, ...];
%e n=3: [1, 18, 54, -3906, 34290, 1326978, -99273402, ...];
%e n=4: [1, 32, 544, -4704, -308640, 6962272, 154469920, ...];
%e n=5: [1, 50, 1750, 25950, -936750, -37790750, 1459186150, ...];
%e n=6: [1, 72, 4104, 159336, 1906200, -192221928, -7838021880, ...];
%e n=7: [1, 98, 8134, 535374, 23730210, 239390578, -52296366122, ...]; ...
%e in which infinite sums of terms along the columns may be illustrated by:
%e 1 = (1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + ...)/e;
%e 4 = (0 + 2 + 8/2! + 18/3! + 32/4! + 50/5! + ...)/e;
%e 0 = (0 + -26 + -56/2! + 54/3! + 544/4! + 1750/5! + ...);
%e 0 = (0 + 366 + -216/2! + -3906/3! + -4704/4! + 25950/5! + ...);
%e 0 = (0 + -6270 + 19800/2! + 34290/3! + -308640/4! + -936750/5! + ...);
%e 0 = (0 + 99922 + -706472/2! + 1326978/3! + 6962272/4! + -37790750/5! ...); ...
%e and can be used to determine all the terms of this sequence.
%K sign
%O 0,2
%A _Paul D. Hanna_, Jan 04 2022