login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363985
a(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(2*n+k,k)*binomial(2*k,k).
7
1, 2, 26, 272, 3418, 44252, 597104, 8249152, 116158298, 1659335492, 23979247276, 349798313152, 5142733169776, 76108788764192, 1132729444052288, 16940944956246272, 254449319912898394, 3836162994088105172, 58028561918702719604
OFFSET
0,2
COMMENTS
The sequence of Franel numbers A000172 satisfies the identity A000172(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(n+2*k,2*k)*binomial(2*k,k). The present sequence comes from a modification of the right-hand side of the identity.
The Franel numbers satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
More generally, define two families of sequences {u_m(n): n >= 0} and {v_m(n): n >= 0}, depending on an integer parameter m, by u_m(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(m*n + k,k)*binomial(2*k,k) and v_m(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(m*n + 2*k,2*k)*binomial(2*k,k). In this notation, the Franel numbers A000172 = v_1. Note that u_0(n) = v_0(n) = (-1)^n*binomial(2*n,n). We conjecture that, for all m in Z, the sequences u_m and v_m satisfy the above supercongruences.
LINKS
FORMULA
a(n) = (-4)^n*hypergeom(-n, 2*n+1, 1/2], [1, 1], 1).
P-recursive: (20*n^2 - 55*n + 38)*n^2*(2*n - 1)^2*a(n) = (960*n^6 - 4560*n^5 + 8564*n^4 - 8107*n^3 + 4085*n^2 - 1044*n + 108)*a(n-1) + 64*(20*n^2 - 15*n + 3)*(n - 1)^2*(2*n - 3)^2*a(n-2) with a(0) = 1 and a(1) = 2.
a(n) ~ 2^(4*n - 1/2) / (Pi*n). - Vaclav Kotesovec, Jul 17 2023
MAPLE
seq(add((-4)^(n-k)*binomial(n, k)*binomial(2*n+k, k)*binomial(2*k, k), k = 0..n), n = 0..20);
# alternative faster program for large n
seq(simplify((-4)^n*hypergeom([-n, 2*n+1, 1/2], [1, 1], 1)), n = 0..20);
MATHEMATICA
Table[(-4)^n*HypergeometricPFQ[{-n, 2*n+1, 1/2}, {1, 1}, 1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 17 2023 *)
Table[Sum[(-4)^(n-k) Binomial[n, k] Binomial[2n+k, k]Binomial[2k, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Dec 26 2024 *)
PROG
(Python)
from sympy import hyper, hyperexpand, S
def A363985(n): return int(hyperexpand(hyper((-n, (m:=n<<1)+1, S.Half), [1, 1], 1))*(-(1<<m) if n&1 else 1<<m)) # Chai Wah Wu, Jul 10 2023
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Peter Bala, Jul 02 2023
STATUS
approved