login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363987
a(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(3*n+k,k)*binomial(2*k,k).
1
1, 4, 72, 1336, 27816, 609504, 13849776, 322761632, 7665078696, 184706717728, 4502875483072, 110816709352848, 2748733193029488, 68633934354206784, 1723482744564382272, 43491464193991134336, 1102200555724995901864, 28038534962615758665120, 715655490507796997136960, 18321118155905647835092032
OFFSET
0,2
COMMENTS
The sequence of Franel numbers A000172 satisfies the identity A000172(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(n+2*k,2*k)*binomial(2*k,k). The present sequence comes from a modification of the right-hand side of the identity.
The Franel numbers satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
FORMULA
a(n) = (-4)^n*hypergeom(-n, 3*n+1, 1/2], [1, 1], 1).
P-recursive: n^2*(4*n - 1)*(3*n - 1)*(3*n - 2)*(4*n - 3)*P(n-1)*a(n) = 16*(57753*n^10 - 500526*n^9 + 1886256*n^8 - 4059105*n^7 + 5508054*n^6 - 4910492*n^5 + 2904096*n^4 - 1121483*n^3 + 269766*n^2 - 36410*n + 2100)*a(n-1) + 192*(3*n - 5)^2*(n - 1)^2*(3*n - 4)^2*P(n)*a(n-2), where P(n) = 279*n^4 - 465*n^3 + 276*n^2 - 68*n + 6 and a(0) = 1, a(1) = 4.
a(n) ~ 3^(3*n) / (sqrt(2)*Pi*n). - Vaclav Kotesovec, Jul 17 2023
MAPLE
seq(add((-4)^(n-k)*binomial(n, k)*binomial(3*n+k, k)*binomial(2*k, k), k = 0..n), n = 0..20);
# alternative faster program for large n
seq(simplify((-4)^n*hypergeom([-n, 3*n+1, 1/2], [1, 1], 1)), n = 0..20);
MATHEMATICA
Table[(-4)^n*HypergeometricPFQ[{-n, 3*n+1, 1/2}, {1, 1}, 1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 17 2023 *)
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 02 2023
EXTENSIONS
a(15) corrected and more terms from Georg Fischer, Sep 19 2023
STATUS
approved