login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363983
a(n) = Sum_{k = floor((n+1)/2)..n} (-1)^(n+k)*binomial(n,k)*binomial(n+k-1,k)*binomial(2*k,n).
1
1, 2, 14, 128, 1310, 14252, 161168, 1872096, 22179102, 266766500, 3247293764, 39914850560, 494587904720, 6170138404640, 77420709800000, 976308769560128, 12365391374849310, 157214288994620820, 2005631418267291740
OFFSET
0,2
COMMENTS
Strehl's first identity for the Franel numbers A000172 is A000172(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(2*k,n). Here we modify the right-hand side of Strehl's identity and consider the sequence defined by a(n) = (-1)^n * Sum_{k = 0..n} binomial(n,k)*binomial(-n,k)*binomial(2*k,n) = Sum_{k = 0..n} (-1)^(n+k)* binomial(n,k)*binomial(n+k-1,k)*binomial(2*k,n).
The Franel numbers satisfy the supercongruences A000172(n*p^r) == A000172(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
LINKS
Eric W. Weisstein's World of Mathematics, Strehl identities
FORMULA
a(2*n) = (-1)^n*(2/3)*(3*n)!/n!^3 * hypergeom([3*n, n + 1/2, -n],[n + 1, 1/2], 1) for n >= 1.
a(2*n+1) = 2*binomial(4*n+1, 2*n+1)*binomial(4*n+1, 2*n) * hypergeom([-n, -(2*n + 1), -(2*n + 1)/2], [-(4*n + 1), -(4*n + 1)/2], 1).
P-recursive: 2*(n^2)*(n - 1)*(5*n^2 - 16*n + 13)*a(n) = (n - 1)*(145*n^4 - 609*n^3 + 868*n^2 - 480*n + 96)*a(n-1) - 3*(n - 2)*(3*n - 4)*(3*n - 5)*(5*n^2 - 6*n + 2)*a(n-2) with a(0) = 1 and a(1) = 2.
EXAMPLE
Examples of supercongruences:
a(7) - a(1) = 1872096 - 2 = 2*(7^3)*2729 == 0 (mod 7^3).
a(2*11) - a(2) = 54602077661833355122560 - 14 = 2*7*(11^3)*182893*16021604008633 == 0 (mod 11^3).
a(5^2) - a(5) = 118334929857938631776326752 - 14252 = (2^2)*(5^6)*7*19*701* 3126449*6495490213 == 0 (mod 5^6).
MAPLE
seq(add((-1)^(n+k)*binomial(n, k)*binomial(n+k-1, k)*binomial(2*k, n), k = 0..n), n = 0..20);
CROSSREFS
Sequence in context: A377217 A155650 A331397 * A258389 A168658 A235347
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 01 2023
STATUS
approved