|
|
A235347
|
|
Series reversion of x*(1-3*x^2)/(1-x^2) in odd-order powers.
|
|
4
|
|
|
1, 2, 14, 130, 1382, 15906, 192894, 2427522, 31405430, 415086658, 5580629870, 76080887042, 1049295082630, 14613980359010, 205246677882078, 2903566870820610, 41337029956899222, 591796707042765954, 8514525059135909070, 123048063153362454402
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This sequence is implied in the solutions of magnetohydrodynamics equations in R^3 for incompressible, electrically-conducting fluids in the presence of a strong Lorentz force. a(n) = numbers of allowable magneto-vortical eddies in terms of initial conditions.
|
|
LINKS
|
Fung Lam, Table of n, a(n) for n = 0..1000
F. Lam, On the Well-posedness of Magnetohydrodynamics Equations for Incompressible Electrically-Conducting Fluids, arXiv:1401.2029 [physics.flu-dyn]
|
|
FORMULA
|
G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v + x/9)/x, where i=sqrt(-1),
u = 1/9*(x^3 - 108 *x + 9*sqrt(-9 + 141*x^2 - 3*x^4))^(1/3), and
v = 1/9*(x^3 - 108 *x - 9*sqrt(-9 + 141*x^2 - 3*x^4))^(1/3).
First few a(n)'s can be obtained by either considering Maclaurin's expansion of G.f. or evaluating the coefficient of x^(n) in 2*sum{j,1,n} ((sum{k,1,n} a(k) x^(2*k-1))^(2*j+1)), a(1)=1, with offset by 1.
|
|
MATHEMATICA
|
Table[(CoefficientList[InverseSeries[Series[x*(1-3*x^2)/(1-x^2), {x, 0, 40}], x], x])[[n]], {n, 2, 40, 2}] (* Vaclav Kotesovec, Jan 29 2014 *)
|
|
PROG
|
(Python)
# a235347. The list a has been calculated (len(a)>=3)
m = len(a)+1
d = 0
for i in range (1, m):
....for j in range (1, m):
........if (i+j)%m ==0 and (i+j) <= m:
............d = d + a[i-1]*a[j-1]
g = 0
for i in range (1, m):
....for j in range (1, m):
........for k in range (1, m):
............if (i+j+k)%(m+1) ==0 and (i+j+k) <= (m+1):
................g = g + a[i-1]*a[j-1]*a[k-1]
y = 3*g - d
# a235347.
(PARI) v=Vec( serreverse(x*(1-3*x^2)/(1-x^2) +O(x^66) ) ); vector(#v\2, j, v[2*j-1]) \\ Joerg Arndt, Jan 14 2014
|
|
CROSSREFS
|
Cf. A235352 (same except for signs).
Sequence in context: A331397 A258389 A168658 * A235352 A146971 A246481
Adjacent sequences: A235344 A235345 A235346 * A235348 A235349 A235350
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Fung Lam, Jan 10 2014
|
|
STATUS
|
approved
|
|
|
|