login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246481
Number of length 2+3 0..n arrays with no pair in any consecutive four terms totalling exactly n.
1
2, 14, 132, 484, 1734, 4386, 10376, 20840, 39690, 68950, 115212, 181644, 278222, 409514, 589584, 824656, 1133586, 1524510, 2021780, 2635700, 3396822, 4317874, 5436312, 6767544, 8356634, 10221926, 12416796, 14962780, 17922270, 21320250
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Conjectures from Colin Barker, Nov 06 2018: (Start)
G.f.: 2*x*(1 + 4*x + 45*x^2 + 52*x^3 + 191*x^4 + 72*x^5 + 115*x^6) / ((1 - x)^6*(1 + x)^3).
a(n) = 5*n - 11*n^2 + 10*n^3 - 4*n^4 + n^5 for n even.
a(n) = 9 - 10*n - 4*n^2 + 10*n^3 - 4*n^4 + n^5 for n odd.
(End)
EXAMPLE
Some solutions for n=6:
..0....1....0....0....3....3....3....4....6....6....5....2....4....1....2....0
..2....0....0....5....6....1....2....3....3....1....0....0....0....1....5....4
..0....4....0....4....6....4....6....4....4....3....5....0....5....2....6....1
..2....4....3....5....6....6....2....4....4....6....0....0....3....0....6....4
..0....1....2....0....1....6....3....6....0....2....4....0....5....2....6....1
CROSSREFS
Row 2 of A246479.
Sequence in context: A235347 A235352 A146971 * A048990 A089602 A336960
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 27 2014
STATUS
approved