|
|
A235348
|
|
Series reversion of x*(1-2*x-5*x^2)/(1-x^2).
|
|
1
|
|
|
1, 2, 12, 82, 636, 5266, 45684, 409706, 3768132, 35346082, 336854844, 3252391170, 31746462732, 312755404818, 3105750620772, 31054695744570, 312404601250644, 3159598296022978, 32108181705850860, 327682918265502002, 3357089384702757276
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
D-finite with recurrence 54*n*(n-1)*a(n) -3*(n-1)*(160*n-237)*a(n-1) +3*(-422*n^2+1721*n-1713)*a(n-2) +2*(-67*n^2+388*n-552)*a(n-3) +(137*n^2-1352*n+3279)*a(n-4) +(7*n-37)*(n-6)*a(n-5) -(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Mar 24 2023
|
|
MATHEMATICA
|
Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-5*x^2)/(1-x^2), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jan 29 2014 *)
|
|
PROG
|
(Python)
# R. J. Mathar, 2023-03-28
def __init__(self) :
self.a = [1, 2, 12, 82, 636, 5266]
def at(self, n):
if n <= len(self.a):
return self.a[n-1]
else:
rhs = -3*(n-1)*(160*n-237)*self.at(n-1) \
+3*(-422*n**2+1721*n-1713)*self.at(n-2) \
+2*(-67*n**2+388*n-552)*self.at(n-3) \
+(137*n**2-1352*n+3279)*self.at(n-4) \
+(7*n-37)*(n-6)*self.at(n-5) -(n-6)*(n-7)*self.at(n-6)
rhs //= (-54*n*(n-1))
self.a.append(rhs)
return self.a[-1]
for n in range(1, 12):
print(a235348.at(n))
# a235348.
(PARI) Vec( serreverse(x*(1-2*x-5*x^2)/(1-x^2) +O(x^66) ) ) \\ Joerg Arndt, Jan 14 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|