login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235348
Series reversion of x*(1-2*x-5*x^2)/(1-x^2).
3
1, 2, 12, 82, 636, 5266, 45684, 409706, 3768132, 35346082, 336854844, 3252391170, 31746462732, 312755404818, 3105750620772, 31054695744570, 312404601250644, 3159598296022978, 32108181705850860, 327682918265502002, 3357089384702757276
OFFSET
1,2
COMMENTS
Sum of turbulence series A107841 and A235347.
FORMULA
D-finite with recurrence 54*n*(n-1)*a(n) -3*(n-1)*(160*n-237)*a(n-1) +3*(-422*n^2+1721*n-1713)*a(n-2) +2*(-67*n^2+388*n-552)*a(n-3) +(137*n^2-1352*n+3279)*a(n-4) +(7*n-37)*(n-6)*a(n-5) -(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Mar 24 2023
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-5*x^2)/(1-x^2), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jan 29 2014 *)
PROG
(Python)
# R. J. Mathar, 2023-03-28
class A235348() :
def __init__(self) :
self.a = [1, 2, 12, 82, 636, 5266]
def at(self, n):
if n <= len(self.a):
return self.a[n-1]
else:
rhs = -3*(n-1)*(160*n-237)*self.at(n-1) \
+3*(-422*n**2+1721*n-1713)*self.at(n-2) \
+2*(-67*n**2+388*n-552)*self.at(n-3) \
+(137*n**2-1352*n+3279)*self.at(n-4) \
+(7*n-37)*(n-6)*self.at(n-5) -(n-6)*(n-7)*self.at(n-6)
rhs //= (-54*n*(n-1))
self.a.append(rhs)
return self.a[-1]
a235348 = A235348()
for n in range(1, 12):
print(a235348.at(n))
# a235348.
(PARI) Vec( serreverse(x*(1-2*x-5*x^2)/(1-x^2) +O(x^66) ) ) \\ Joerg Arndt, Jan 14 2014
CROSSREFS
Sequence in context: A055548 A092850 A199420 * A052864 A355378 A136278
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Jan 13 2014
STATUS
approved