login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235350 Series reversion of x*(1-2*x-x^2)/(1-x^2). 1
1, 2, 8, 42, 248, 1570, 10416, 71474, 503088, 3612226, 26353720, 194806458, 1455874792, 10982013250, 83504148192, 639360351074, 4925190101600, 38144591091970, 296837838901992, 2319880586624714, 18200693844341720, 143294043656426082, 1131747417739664528 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Derived series from A107841. The reversion has a quadratic power in x in the denominator. The general form reads x*(1-p*x-q*x^2)/(1-q*x^2).

LINKS

Fung Lam, Table of n, a(n) for n = 1..1000

FORMULA

G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v - 2/3)/x, where i=sqrt(-1),

u = 1/3*(-17+3*x-6*x^2+x^3+3*sqrt(-6+54*x-30*x^2+18*x^3-3*x^4))^(1/3), and

v = 1/3*(-17+3*x-6*x^2+x^3-3*sqrt(-6+54*x-30*x^2+18*x^3-3*x^4))^(1/3).

First few terms can be obtained by Maclaurin's expansion of G.f.

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-x^2)/(1-x^2), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jan 29 2014 *)

PROG

(Python)

# a235350. The list a has been calculated (len(a)>=3).

m = len(a)

d = 0

for i in range (1, m+3):

....for j in range (1, m+3):

........if (i+j)%m ==0 and (i+j) <= m:

............d = d + a[i-1]*a[j-1]

f = 0

for i in range (1, m+1):

....for j in range (1, m+1):

........if (i+j)%(m+1) ==0 and (i+j) <= (m+1):

............f = f + a[i-1]*a[j-1]

g = 0

for i in range (1, m+1):

....for j in range (1, m+1):

........for k in range (1, ip):

............if (i+j+k)%(m+1) ==0 and (i+j+k) <= (m+1):

................g = g + a[i-1]*a[j-1]*a[k-1]

y = g + 2*f - d

# a235350.

(PARI) Vec(serreverse(x*(1-2*x-x^2)/(1-x^2)+O(x^66))) \\ Joerg Arndt, Jan 17 2014

CROSSREFS

Cf. A107841.

Sequence in context: A129277 A120916 A133417 * A100327 A018934 A107588

Adjacent sequences:  A235347 A235348 A235349 * A235351 A235352 A235353

KEYWORD

nonn,easy

AUTHOR

Fung Lam, Jan 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 17:18 EDT 2021. Contains 345388 sequences. (Running on oeis4.)