login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187252
Number of cycles with at least 3 alternating runs in all permutations of [n] (it is assumed that the smallest element of a cycle is in the first position).
1
0, 0, 0, 0, 2, 26, 260, 2508, 25040, 265552, 3018144, 36827872, 481850240, 6743052672, 100629754112, 1596624594688, 26853667866624, 477435143587840, 8949520012611584, 176443253945217024, 3650510179312910336, 79093615773747232768, 1791150489194147512320
OFFSET
0,5
COMMENTS
a(n) = Sum_{k>=0} k * A187250(n,k).
FORMULA
E.g.f.: g(z) = -(1/4)*(2*z - 1 + exp(2*z) + 4*log(1-z)) / (1-z).
a(n) ~ n! * log(n) * (1 + (gamma - (1+exp(2))/4) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 10 2021
Conjecture D-finite with recurrence a(n) +(-2*n-3)*a(n-1) +(n+7)*(n-1)*a(n-2) +4*(-n^2+2*n+1)*a(n-3) +4*(n-3)^2*a(n-4)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(4) = 2 because among the permutations of {1,2,3,4} only 3421=(1324) and 4312=(1423) have cycles with more than 2 alternating runs.
MAPLE
g := ((1-2*z-exp(2*z)-4*ln(1-z))*1/4)/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
PROG
(PARI) { my(z='z+O('z^33)); concat( [0, 0, 0, 0], Vec(serlaplace(-(1/4)*(2*z-1+exp(2*z)+4*log(1-z))/(1-z)))) } \\ Joerg Arndt, Apr 16 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 08 2011
STATUS
approved